mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 00:37:25 +01:00
[apps] Graph: first version of a function minimum finding algorithm
This commit is contained in:
committed by
EmilieNumworks
parent
7077cb4f58
commit
03ebffa09d
@@ -1,4 +1,8 @@
|
||||
#include "cartesian_function.h"
|
||||
#include <float.h>
|
||||
#include <cmath>
|
||||
|
||||
using namespace Poincare;
|
||||
|
||||
namespace Graph {
|
||||
|
||||
@@ -37,8 +41,100 @@ double CartesianFunction::sumBetweenBounds(double start, double end, Poincare::C
|
||||
return integral.approximateToScalar<double>(*context);
|
||||
}
|
||||
|
||||
CartesianFunction::Point CartesianFunction::mininimumBetweenBounds(double start, double end, Poincare::Context * context) const {
|
||||
Point p = brentAlgorithm(start, end, context);
|
||||
if (evaluateAtAbscissa(p.abscissa-k_sqrtEps, context) < p.value || evaluateAtAbscissa(p.abscissa+k_sqrtEps, context) < p.value || std::isnan(p.value)) {
|
||||
p.abscissa = NAN;
|
||||
p.value = NAN;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
char CartesianFunction::symbol() const {
|
||||
return 'x';
|
||||
}
|
||||
|
||||
CartesianFunction::Point CartesianFunction::brentAlgorithm(double ax, double bx, Context * context) const {
|
||||
double e = 0.0;
|
||||
double a = ax;
|
||||
double b = bx;
|
||||
double x = a+k_goldenRatio*(b-a);
|
||||
double v = x;
|
||||
double w = x;
|
||||
double fx = evaluateAtAbscissa(x, context);
|
||||
double fw = fx;
|
||||
double fv = fw;
|
||||
|
||||
double d = NAN;
|
||||
double u, fu;
|
||||
|
||||
for (int i = 0; i < 100; i++) {
|
||||
double m = 0.5*(a+b);
|
||||
double tol1 = k_sqrtEps*std::fabs(x)+1E-10;
|
||||
double tol2 = 2.0*tol1;
|
||||
if (std::fabs(x-m) <= tol2-0.5*(b-a)) {
|
||||
Point result = {.abscissa = x, .value = fx};
|
||||
return result;
|
||||
}
|
||||
double p = 0;
|
||||
double q = 0;
|
||||
double r = 0;
|
||||
if (std::fabs(e) > tol1) {
|
||||
r = (x-w)*(fx-fv);
|
||||
q = (x-v)*(fx-fw);
|
||||
p = (x-v)*q -(x-w)*r;
|
||||
q = 2.0*(q-r);
|
||||
if (q>0.0) {
|
||||
p = -p;
|
||||
} else {
|
||||
q = -q;
|
||||
}
|
||||
r = e;
|
||||
e = d;
|
||||
}
|
||||
if (std::fabs(p) < std::fabs(0.5*q*r) && p<q*(a-x) && p<q*(b-x)) {
|
||||
d = p/q;
|
||||
u= x+d;
|
||||
if (u-a < tol2 || b-u < tol2) {
|
||||
d = x < m ? tol1 : -tol1;
|
||||
}
|
||||
} else {
|
||||
e = x<m ? b-x : a-x;
|
||||
d = k_goldenRatio*e;
|
||||
}
|
||||
u = x + (std::fabs(d) >= tol1 ? d : (d>0 ? tol1 : -tol1));
|
||||
fu = evaluateAtAbscissa(u, context);
|
||||
if (fu <= fx) {
|
||||
if (u<x) {
|
||||
b = x;
|
||||
} else {
|
||||
a = x;
|
||||
}
|
||||
v = w;
|
||||
fv = fw;
|
||||
w = x;
|
||||
fw = fx;
|
||||
x = u;
|
||||
fx = fu;
|
||||
} else {
|
||||
if (u<x) {
|
||||
a = u;
|
||||
} else {
|
||||
b = u;
|
||||
}
|
||||
if (fu <= fw || w == x) {
|
||||
v = w;
|
||||
fv = fw;
|
||||
w = u;
|
||||
fw = fu;
|
||||
} else if (fu <= fv || v == x || v == w) {
|
||||
v = u;
|
||||
fv = fu;
|
||||
}
|
||||
}
|
||||
}
|
||||
Point result = {.abscissa = NAN, .value = NAN};
|
||||
return result;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user