[python] matplotlib: make pyplot a submodule of matplotlib

This commit is contained in:
Émilie Feral
2020-03-30 13:58:02 +02:00
parent 7d5568ff1a
commit 61e7ec52e6
16 changed files with 79 additions and 6 deletions

View File

@@ -0,0 +1,342 @@
extern "C" {
#include "modpyplot.h"
}
#include <assert.h>
#include <escher/palette.h>
#include "port.h"
#include "plot_controller.h"
Matplotlib::PlotStore * sPlotStore = nullptr;
Matplotlib::PlotController * sPlotController = nullptr;
static int paletteIndex = 0;
// Private helper
// Method to populate items with a scalar or an array argument
static size_t extractArgument(mp_obj_t arg, mp_obj_t ** items) {
size_t itemLength;
if (mp_obj_is_type(arg, &mp_type_tuple) || mp_obj_is_type(arg, &mp_type_list)) {
mp_obj_get_array(arg, &itemLength, items);
} else {
itemLength = 1;
*items = m_new(mp_obj_t, 1);
(*items)[0] = arg;
}
return itemLength;
}
// Extract two scalar or array arguments and check for their strickly equal dimension
static size_t extractArgumentsAndCheckEqualSize(mp_obj_t x, mp_obj_t y, mp_obj_t ** xItems, mp_obj_t ** yItems) {
size_t xLength = extractArgument(x, xItems);
size_t yLength = extractArgument(y, yItems);
if (xLength != yLength) {
mp_raise_ValueError("x and y must be the same size");
}
return xLength;
}
/* Extract one scalar or array arguments and check that it is either:
* - of size 1
* - of the required size
*/
size_t extractArgumentAndValidateSize(mp_obj_t arg, size_t requiredlength, mp_obj_t ** items) {
size_t itemLength = extractArgument(arg, items);
if (itemLength > 1 && requiredlength > 1 && itemLength != requiredlength) {
mp_raise_ValueError("shape mismatch");
}
return itemLength;
}
// Internal functions
mp_obj_t modpyplot___init__() {
static Matplotlib::PlotStore plotStore;
static Matplotlib::PlotController plotController(&plotStore);
sPlotStore = &plotStore;
sPlotController = &plotController;
sPlotStore->flush();
paletteIndex = 0;
return mp_const_none;
}
void modpyplot_gc_collect() {
if (sPlotStore == nullptr) {
return;
}
MicroPython::collectRootsAtAddress(
reinterpret_cast<char *>(sPlotStore),
sizeof(Matplotlib::PlotStore)
);
}
mp_obj_t modpyplot_arrow(size_t n_args, const mp_obj_t *args) {
assert(n_args == 4);
assert(sPlotStore != nullptr);
KDColor color = Palette::nextDataColor(&paletteIndex);
sPlotStore->addSegment(args[0], args[1], mp_obj_new_float(mp_obj_get_float(args[0])+mp_obj_get_float(args[2])), mp_obj_new_float(mp_obj_get_float(args[1])+mp_obj_get_float(args[3])), color, true); // TODO: use float_binary_op
return mp_const_none;
}
/* axis(arg)
* - arg = "on", "off", "auto"
* - arg = True, False
* - arg = [xmin, xmax, ymin, ymax], (xmin, xmax, ymin, ymax)
* Returns : (xmin, xmax, ymin, ymax) : float */
mp_obj_t modpyplot_axis(size_t n_args, const mp_obj_t *args) {
assert(sPlotStore != nullptr);
if (n_args == 1) {
mp_obj_t arg = args[0];
if (mp_obj_is_str(arg)) {
if (mp_obj_str_equal(arg, mp_obj_new_str("on", 2))) {
sPlotStore->setAxesRequested(true);
} else if (mp_obj_str_equal(arg, mp_obj_new_str("off", 3))) {
sPlotStore->setAxesRequested(false);
} else if (mp_obj_str_equal(arg, mp_obj_new_str("auto", 4))) {
sPlotStore->setAxesRequested(true);
sPlotStore->setAxesAuto(true);
} else {
mp_raise_ValueError("Unrecognized string given to axis; try 'on', 'off' or 'auto'");
}
#warning Use mp_obj_is_bool when upgrading uPy
} else if (mp_obj_is_type(arg, &mp_type_bool)) {
sPlotStore->setAxesRequested(mp_obj_is_true(arg));
} else if (mp_obj_is_type(arg, &mp_type_tuple) || mp_obj_is_type(arg, &mp_type_list)) {
mp_obj_t * items;
mp_obj_get_array_fixed_n(arg, 4, &items);
sPlotStore->setXMin(mp_obj_get_float(items[0]));
sPlotStore->setXMax(mp_obj_get_float(items[1]));
sPlotStore->setYMin(mp_obj_get_float(items[2]));
sPlotStore->setYMax(mp_obj_get_float(items[3]));
sPlotStore->setAxesAuto(false);
} else {
mp_raise_TypeError("the first argument to axis() must be an interable of the form [xmin, xmax, ymin, ymax]");
}
}
// Build the return value
mp_obj_t coords[4];
coords[0] = mp_obj_new_float(sPlotStore->xMin());
coords[1] = mp_obj_new_float(sPlotStore->xMax());
coords[2] = mp_obj_new_float(sPlotStore->yMin());
coords[3] = mp_obj_new_float(sPlotStore->yMax());
return mp_obj_new_tuple(4, coords);
}
/* bar(x, height, width, bottom)
* 'x', 'height', 'width' and 'bottom' can either be a scalar or an array/tuple of
* scalar.
* 'width' default value is 0.8
* 'bottom' default value is None
* */
// TODO: accept keyword args?
mp_obj_t modpyplot_bar(size_t n_args, const mp_obj_t *args) {
assert(sPlotStore != nullptr);
mp_obj_t * xItems;
mp_obj_t * hItems;
mp_obj_t * wItems;
mp_obj_t * bItems;
// x arg
size_t xLength = extractArgument(args[0], &xItems);
// height arg
size_t hLength = extractArgumentAndValidateSize(args[1], xLength, &hItems);
// width arg
size_t wLength = 1;
if (n_args >= 3) {
wLength = extractArgumentAndValidateSize(args[2], xLength, &wItems);
} else {
wItems = m_new(mp_obj_t, 1);
wItems[0] = mp_obj_new_float(0.8f);
}
// bottom arg
size_t bLength = 1;
if (n_args >= 4) {
bLength = extractArgumentAndValidateSize(args[3], xLength, &bItems);
} else {
bItems = m_new(mp_obj_t, 1);
bItems[0] = mp_obj_new_float(0.0f);
}
KDColor color = Palette::nextDataColor(&paletteIndex);
for (size_t i=0; i<xLength; i++) {
mp_float_t iH = mp_obj_get_float(hItems[hLength > 1 ? i : 0]);
mp_float_t iW = mp_obj_get_float(wItems[wLength > 1 ? i : 0]);
mp_float_t iB = mp_obj_get_float(bItems[bLength > 1 ? i : 0]);
mp_float_t iX = mp_obj_get_float(xItems[i])-iW/2.0;
mp_float_t iY = iH < 0.0 ? iB : iB + iH;
sPlotStore->addRect(mp_obj_new_float(iX), mp_obj_new_float(iY), mp_obj_new_float(iW), mp_obj_new_float(std::fabs(iH)), color);
}
return mp_const_none;
}
mp_obj_t modpyplot_grid(size_t n_args, const mp_obj_t *args) {
assert(sPlotStore != nullptr);
if (n_args == 0) {
// Toggle the grid visibility
sPlotStore->setGridRequested(!sPlotStore->gridRequested());
} else {
sPlotStore->setGridRequested(mp_obj_is_true(args[0]));
}
return mp_const_none;
}
/* hist(x, bins)
* 'x' array
* 'bins': (default value 10)
* - int (number of bins)
* - sequence of bins
* */
mp_obj_t modpyplot_hist(size_t n_args, const mp_obj_t *args) {
assert(sPlotStore != nullptr);
// Sort data to easily get the minimal and maximal value and count bin sizes
mp_obj_t * xItems;
size_t xLength = extractArgument(args[0], &xItems);
mp_obj_t xList = mp_obj_new_list(xLength, xItems);
mp_obj_list_sort(1, &xList, (mp_map_t*)&mp_const_empty_map);
mp_obj_list_get(xList, &xLength, &xItems);
mp_float_t min = mp_obj_get_float(xItems[0]);
mp_float_t max = mp_obj_get_float(xItems[xLength - 1]);
mp_obj_t * edgeItems;
size_t nBins;
// bin arg
if (n_args >= 2 && (mp_obj_is_type(args[1], &mp_type_tuple) || mp_obj_is_type(args[1], &mp_type_list))) {
size_t nEdges;
mp_obj_get_array(args[1], &nEdges, &edgeItems);
nBins = nEdges -1;
} else {
nBins = 10;
if (n_args >= 2) {
nBins = mp_obj_get_int(args[1]);
}
mp_float_t binWidth = (max-min)/nBins;
// Create a array of bins
edgeItems = m_new(mp_obj_t, nBins + 1);
// Handle empty range case
if (max - min <= FLT_EPSILON) {
binWidth = 1.0;
nBins = 1;
}
// Fill the bin edges list
for (int i = 0; i < nBins+1; i++) {
edgeItems[i] = mp_obj_new_float(min+i*binWidth);
}
}
// Initialize bins list
mp_obj_t * binItems = m_new(mp_obj_t, nBins);
for (size_t i=0; i<nBins; i++) {
binItems[i] = mp_obj_new_int(0);
}
// Fill bins list by linearly scanning the x and incrementing the bin count
// Linearity is enabled thanks to sorting
size_t binIndex = 0;
size_t xIndex = 0;
while (xIndex < xLength) {
assert(binIndex < nBins);
mp_float_t upperBound = mp_obj_get_float(edgeItems[binIndex+1]);
while (mp_obj_get_float(xItems[xIndex]) < upperBound || (binIndex == nBins - 1 && mp_obj_get_float(xItems[xIndex]) == upperBound)) {
// Increment the bin count
binItems[binIndex] = mp_obj_new_int(mp_obj_get_int(binItems[binIndex]) + 1); // TODO: better way?
xIndex++;
if (xIndex == xLength) {
break;
}
}
binIndex++;
}
KDColor color = Palette::nextDataColor(&paletteIndex);
for (size_t i=0; i<nBins; i++) {
mp_float_t width = mp_obj_get_float(edgeItems[i+1]) - mp_obj_get_float(edgeItems[i]);
sPlotStore->addRect(edgeItems[i], binItems[i], mp_obj_new_float(width), binItems[i], color);
}
return mp_const_none;
}
/* scatter(x, y)
* - x, y: list
* - x, y: scalar
* */
mp_obj_t modpyplot_scatter(mp_obj_t x, mp_obj_t y) {
assert(sPlotStore != nullptr);
mp_obj_t * xItems, * yItems;
size_t length = extractArgumentsAndCheckEqualSize(x, y, &xItems, &yItems);
KDColor color = Palette::nextDataColor(&paletteIndex);
for (size_t i=0; i<length; i++) {
sPlotStore->addDot(xItems[i], yItems[i], color);
}
return mp_const_none;
}
/* plot(x, y) plots the curve (x, y)
* plot(y) plots the curve x as index array ([0,1,2...],y)
* */
mp_obj_t modpyplot_plot(size_t n_args, const mp_obj_t *args) {
assert(sPlotStore != nullptr);
mp_obj_t * xItems, * yItems;
size_t length;
if (n_args == 1) {
length = extractArgument(args[0], &yItems);
// Create the default xItems: [0, 1, 2,...]
xItems = m_new(mp_obj_t, length);
for (int i = 0; i < length; i++) {
xItems[i] = mp_obj_new_float((float)i);
}
} else {
assert(n_args == 2);
length = extractArgumentsAndCheckEqualSize(args[0], args[1], &xItems, &yItems);
}
KDColor color = Palette::nextDataColor(&paletteIndex);
for (size_t i=0; i<length-1; i++) {
sPlotStore->addSegment(xItems[i], yItems[i], xItems[i+1], yItems[i+1], color, false);
}
return mp_const_none;
}
mp_obj_t modpyplot_text(mp_obj_t x, mp_obj_t y, mp_obj_t s) {
assert(sPlotStore != nullptr);
// Input parameter validation
mp_obj_get_float(x);
mp_obj_get_float(y);
mp_obj_str_get_str(s);
sPlotStore->addLabel(x, y, s);
return mp_const_none;
}
mp_obj_t modpyplot_show() {
MicroPython::ExecutionEnvironment * env = MicroPython::ExecutionEnvironment::currentExecutionEnvironment();
env->displayViewController(sPlotController);
return mp_const_none;
}

View File

@@ -0,0 +1,15 @@
#include <py/obj.h>
mp_obj_t modpyplot___init__();
void modpyplot_gc_collect();
void modpyplot_flush_used_heap();
mp_obj_t modpyplot_arrow(size_t n_args, const mp_obj_t *args);
mp_obj_t modpyplot_axis(size_t n_args, const mp_obj_t *args);
mp_obj_t modpyplot_bar(size_t n_args, const mp_obj_t *args);
mp_obj_t modpyplot_grid(size_t n_args, const mp_obj_t *args);
mp_obj_t modpyplot_hist(size_t n_args, const mp_obj_t *args);
mp_obj_t modpyplot_plot(size_t n_args, const mp_obj_t *args);
mp_obj_t modpyplot_scatter(mp_obj_t x, mp_obj_t y);
mp_obj_t modpyplot_text(mp_obj_t x, mp_obj_t y, mp_obj_t s);
mp_obj_t modpyplot_show();

View File

@@ -0,0 +1,33 @@
#include "modpyplot.h"
STATIC MP_DEFINE_CONST_FUN_OBJ_0(modpyplot___init___obj, modpyplot___init__);
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(modpyplot_arrow_obj, 4, 4, modpyplot_arrow);
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(modpyplot_axis_obj, 0, 1, modpyplot_axis);
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(modpyplot_bar_obj, 2, 4, modpyplot_bar);
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(modpyplot_grid_obj, 0, 1, modpyplot_grid);
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(modpyplot_hist_obj, 1, 2, modpyplot_hist);
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(modpyplot_plot_obj, 1, 2, modpyplot_plot);
STATIC MP_DEFINE_CONST_FUN_OBJ_2(modpyplot_scatter_obj, modpyplot_scatter);
STATIC MP_DEFINE_CONST_FUN_OBJ_0(modpyplot_show_obj, modpyplot_show);
STATIC MP_DEFINE_CONST_FUN_OBJ_3(modpyplot_text_obj, modpyplot_text);
STATIC const mp_rom_map_elem_t modpyplot_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_pyplot) },
{ MP_ROM_QSTR(MP_QSTR___init__), MP_ROM_PTR(&modpyplot___init___obj) },
{ MP_ROM_QSTR(MP_QSTR_arrow), MP_ROM_PTR(&modpyplot_arrow_obj) },
{ MP_ROM_QSTR(MP_QSTR_axis), MP_ROM_PTR(&modpyplot_axis_obj) },
{ MP_ROM_QSTR(MP_QSTR_bar), MP_ROM_PTR(&modpyplot_bar_obj) },
{ MP_ROM_QSTR(MP_QSTR_grid), MP_ROM_PTR(&modpyplot_grid_obj) },
{ MP_ROM_QSTR(MP_QSTR_hist), MP_ROM_PTR(&modpyplot_hist_obj) },
{ MP_ROM_QSTR(MP_QSTR_plot), MP_ROM_PTR(&modpyplot_plot_obj) },
{ MP_ROM_QSTR(MP_QSTR_scatter), MP_ROM_PTR(&modpyplot_scatter_obj) },
{ MP_ROM_QSTR(MP_QSTR_show), MP_ROM_PTR(&modpyplot_show_obj) },
{ MP_ROM_QSTR(MP_QSTR_text), MP_ROM_PTR(&modpyplot_text_obj) },
};
STATIC MP_DEFINE_CONST_DICT(modpyplot_module_globals, modpyplot_module_globals_table);
const mp_obj_module_t modpyplot_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&modpyplot_module_globals,
};

View File

@@ -0,0 +1,14 @@
#include "plot_controller.h"
namespace Matplotlib {
void PlotController::viewWillAppear() {
m_store->initRange();
curveView()->reload();
}
void PlotController::viewDidDisappear() {
m_store->flush();
}
}

View File

@@ -0,0 +1,27 @@
#ifndef PYTHON_MATPLOTLIB_PLOT_CONTROLLER_H
#define PYTHON_MATPLOTLIB_PLOT_CONTROLLER_H
#include <apps/shared/zoom_and_pan_curve_view_controller.h>
#include "plot_view.h"
#include "plot_store.h"
namespace Matplotlib {
class PlotController : public Shared::ZoomAndPanCurveViewController {
public:
PlotController(PlotStore * store) : Shared::ZoomAndPanCurveViewController(nullptr), m_store(store), m_view(m_store) {}
void viewWillAppear() override;
void viewDidDisappear() override;
protected:
Shared::CurveView * curveView() override { return &m_view; }
Shared::InteractiveCurveViewRange * interactiveCurveViewRange() override { return m_store; }
private:
PlotStore * m_store;
PlotView m_view;
};
}
#endif

View File

@@ -0,0 +1,214 @@
#include "plot_store.h"
namespace Matplotlib {
PlotStore::PlotStore() : Shared::InteractiveCurveViewRange(),
m_axesRequested(true),
m_axesAuto(true),
m_gridRequested(false)
{
flush();
}
void PlotStore::flush() {
m_dots = mp_obj_new_list(0, nullptr);
m_segments = mp_obj_new_list(0, nullptr);
m_rects = mp_obj_new_list(0, nullptr);
m_labels = mp_obj_new_list(0, nullptr);
m_axesRequested = true;
m_axesAuto = true;
m_gridRequested = false;
}
// Iterators
template <class T>
PlotStore::ListIterator<T> PlotStore::ListIterator<T>::Begin(mp_obj_t list) {
ListIterator<T> it;
mp_obj_list_get(list, &(it.m_numberOfTuples), &(it.m_tuples));
return it;
}
template <class T>
PlotStore::ListIterator<T> PlotStore::ListIterator<T>::End(mp_obj_t list) {
ListIterator<T> it;
mp_obj_list_get(list, &(it.m_numberOfTuples), &(it.m_tuples));
if (it.m_numberOfTuples > 0) {
it.m_tupleIndex = it.m_numberOfTuples;
}
return it;
}
template <class T>
PlotStore::ListIterator<T> & PlotStore::ListIterator<T>::operator++() {
if (m_tupleIndex < m_numberOfTuples) {
m_tupleIndex++;
}
return *this;
}
template <class T>
bool PlotStore::ListIterator<T>::operator!=(const PlotStore::ListIterator<T> & it) const {
return m_tupleIndex != it.m_tupleIndex;
};
template <class T>
T PlotStore::ListIterator<T>::operator*() {
return T(m_tuples[m_tupleIndex]);
};
void checkFloatType(mp_obj_t * elements, size_t nbOfElements) {
for (int i = 0; i < nbOfElements; i++) {
// TODO: we don't take advantage of the fact that we extracted the value at the sametime... Maybe change the way things are done, build the c objects in addItem instead of allocating them on the python heap? Or use float array in python?
mp_float_t value;
if (!mp_obj_get_float_maybe(elements[i], &value)) {
mp_raise_TypeError("argument should be a number");
}
}
}
// Dot
template class PlotStore::ListIterator<PlotStore::Dot>;
PlotStore::Dot::Dot(mp_obj_t tuple) {
mp_obj_t * elements;
mp_obj_get_array_fixed_n(tuple, 3, &elements);
m_x = mp_obj_get_float(elements[0]);
m_y = mp_obj_get_float(elements[1]);
m_color = KDColor::RGB16(mp_obj_get_int(elements[2]));
}
void PlotStore::addDot(mp_obj_t x, mp_obj_t y, KDColor c) {
mp_obj_t color = mp_obj_new_int(c);
mp_obj_t items[3] = {x, y, color};
checkFloatType(items, 2);
mp_obj_t tuple = mp_obj_new_tuple(3, items);
mp_obj_list_append(m_dots, tuple);
}
// Segment
template class PlotStore::ListIterator<PlotStore::Segment>;
PlotStore::Segment::Segment(mp_obj_t tuple) {
mp_obj_t * elements;
mp_obj_get_array_fixed_n(tuple, 6 , &elements);
m_xStart = mp_obj_get_float(elements[0]);
m_yStart = mp_obj_get_float(elements[1]);
m_xEnd = mp_obj_get_float(elements[2]);
m_yEnd = mp_obj_get_float(elements[3]);
m_color = KDColor::RGB16(mp_obj_get_int(elements[4]));
m_arrow = elements[5] == mp_const_true;
}
void PlotStore::addSegment(mp_obj_t xStart, mp_obj_t yStart, mp_obj_t xEnd, mp_obj_t yEnd, KDColor c, bool arrowEdge) {
mp_obj_t color = mp_obj_new_int(c);
mp_obj_t items[6] = {xStart, yStart, xEnd, yEnd, color, arrowEdge ? mp_const_true : mp_const_false};
checkFloatType(items, 4);
mp_obj_t tuple = mp_obj_new_tuple(6, items);
mp_obj_list_append(m_segments, tuple);
}
// Rect
template class PlotStore::ListIterator<PlotStore::Rect>;
PlotStore::Rect::Rect(mp_obj_t tuple) {
mp_obj_t * elements;
mp_obj_get_array_fixed_n(tuple, 5, &elements);
m_x = mp_obj_get_float(elements[0]);
m_y = mp_obj_get_float(elements[1]);
m_width = mp_obj_get_float(elements[2]);
m_height = mp_obj_get_float(elements[3]);
m_color = KDColor::RGB16(mp_obj_get_int(elements[4]));
}
void PlotStore::addRect(mp_obj_t x, mp_obj_t y, mp_obj_t width, mp_obj_t height, KDColor c) {
mp_obj_t color = mp_obj_new_int(c);
mp_obj_t items[5] = {x, y, width, height, color};
checkFloatType(items, 4);
mp_obj_t tuple = mp_obj_new_tuple(5, items);
mp_obj_list_append(m_rects, tuple);
}
// Label
template class PlotStore::ListIterator<PlotStore::Label>;
PlotStore::Label::Label(mp_obj_t tuple) {
mp_obj_t * elements;
mp_obj_get_array_fixed_n(tuple, 3, &elements);
m_x = mp_obj_get_float(elements[0]);
m_y = mp_obj_get_float(elements[1]);
m_string = mp_obj_str_get_str(elements[2]);
}
void PlotStore::addLabel(mp_obj_t x, mp_obj_t y, mp_obj_t string) {
mp_obj_t items[3] = {x, y, string};
checkFloatType(items, 2);
if (!mp_obj_is_str(string)) {
mp_raise_TypeError("argument should be a string");
}
mp_obj_t tuple = mp_obj_new_tuple(3, items);
mp_obj_list_append(m_labels, tuple);
}
// Axes
static inline float minFloat(float x, float y) { return x < y ? x : y; }
static inline float maxFloat(float x, float y) { return x > y ? x : y; }
void updateRange(float * xMin, float * xMax, float * yMin, float * yMax, float x, float y) {
if (!std::isnan(x) && !std::isinf(x) && !std::isnan(y) && !std::isinf(y)) {
*xMin = minFloat(*xMin, x);
*xMax = maxFloat(*xMax, x);
*yMin = minFloat(*yMin, y);
*yMax = maxFloat(*yMax, y);
}
}
void checkPositiveRangeAndAddMargin(float * min, float * max) {
if (*min > *max) {
*min = - Shared::Range1D::k_default;
*max = Shared::Range1D::k_default;
return;
}
// Add margins
float margin = (*max - *min)/10.0f;
*min -= margin;
*max += margin;
}
void PlotStore::initRange() {
if (m_axesAuto) {
float xMin = FLT_MAX;
float xMax = -FLT_MAX;
float yMin = FLT_MAX;
float yMax = -FLT_MAX;
for (PlotStore::Dot dot : dots()) {
updateRange(&xMin, &xMax, &yMin, &yMax, dot.x(), dot.y());
}
for (PlotStore::Label label : labels()) {
updateRange(&xMin, &xMax, &yMin, &yMax, label.x(), label.y());
}
for (PlotStore::Segment segment : segments()) {
updateRange(&xMin, &xMax, &yMin, &yMax, segment.xStart(), segment.yStart());
updateRange(&xMin, &xMax, &yMin, &yMax, segment.xEnd(), segment.yEnd());
}
for (PlotStore::Rect rectangle : rects()) {
float x = rectangle.x();
float y = rectangle.y();
updateRange(&xMin, &xMax, &yMin, &yMax, x, y);
updateRange(&xMin, &xMax, &yMin, &yMax, x + rectangle.width(), y - rectangle.height());
}
checkPositiveRangeAndAddMargin(&xMin, &xMax);
checkPositiveRangeAndAddMargin(&yMin, &yMax);
setXMin(xMin);
setXMax(xMax);
setYMin(yMin);
setYMax(yMax);
}
}
}

View File

@@ -0,0 +1,141 @@
#ifndef PYTHON_MATPLOTLIB_PLOT_STORE_H
#define PYTHON_MATPLOTLIB_PLOT_STORE_H
//#include <apps/shared/curve_view_range.h>
#include <apps/shared/interactive_curve_view_range.h>
extern "C" {
#include <py/runtime.h>
}
namespace Matplotlib {
class PlotStore : public Shared::InteractiveCurveViewRange {
public:
PlotStore();
void flush();
// Iterators
template <class T>
class ListIterator {
public:
static ListIterator Begin(mp_obj_t list);
static ListIterator End(mp_obj_t list);
T operator*();
ListIterator & operator++();
bool operator!=(const ListIterator & it) const;
private:
ListIterator() : m_tupleIndex(0) {}
mp_obj_t * m_tuples;
size_t m_numberOfTuples;
size_t m_tupleIndex;
};
template <class T>
class Iterable {
public:
Iterable(mp_obj_t list) : m_list(list) {}
T begin() const { return T::Begin(m_list); }
T end() const { return T::End(m_list); }
private:
mp_obj_t m_list;
};
// Dot
class Dot {
public:
Dot(mp_obj_t tuple);
float x() const { return m_x; }
float y() const { return m_y; }
KDColor color() const { return m_color; }
private:
float m_x;
float m_y;
KDColor m_color;
};
void addDot(mp_obj_t x, mp_obj_t y, KDColor c);
Iterable<ListIterator<Dot>> dots() { return Iterable<ListIterator<Dot>>(m_dots); }
// Segment
class Segment {
public:
Segment(mp_obj_t tuple);
float xStart() const { return m_xStart; }
float yStart() const { return m_yStart; }
float xEnd() const { return m_xEnd; }
float yEnd() const { return m_yEnd; }
bool isArrow() const { return m_arrow; }
KDColor color() const { return m_color; }
private:
float m_xStart;
float m_yStart;
float m_xEnd;
float m_yEnd;
bool m_arrow;
KDColor m_color;
};
void addSegment(mp_obj_t xStart, mp_obj_t yStart, mp_obj_t xEnd, mp_obj_t yEnd, KDColor c, bool arrowEdge);
Iterable<ListIterator<Segment>> segments() { return Iterable<ListIterator<Segment>>(m_segments); }
// Rect
class Rect {
public:
Rect(mp_obj_t tuple);
float x() const { return m_x; }
float y() const { return m_y; }
float width() const { return m_width; }
float height() const { return m_height; }
KDColor color() const { return m_color; }
private:
float m_x;
float m_y;
float m_width;
float m_height;
KDColor m_color;
};
void addRect(mp_obj_t x, mp_obj_t y, mp_obj_t width, mp_obj_t height, KDColor c);
Iterable<ListIterator<Rect>> rects() { return Iterable<ListIterator<Rect>>(m_rects); }
// Label
class Label {
public:
Label(mp_obj_t tuple);
float x() const { return m_x; }
float y() const { return m_y; }
const char * string() const { return m_string; }
private:
float m_x;
float m_y;
const char * m_string;
};
void addLabel(mp_obj_t x, mp_obj_t y, mp_obj_t string);
Iterable<ListIterator<Label>> labels() { return Iterable<ListIterator<Label>>(m_labels); }
void setAxesRequested(bool b) { m_axesRequested = b; }
bool axesRequested() const { return m_axesRequested; }
void setAxesAuto(bool b) { m_axesAuto = b; }
void initRange();
void setGridRequested(bool b) { m_gridRequested = b; }
bool gridRequested() const { return m_gridRequested; }
private:
mp_obj_t m_dots; // List of (x, y, color)
mp_obj_t m_labels; // List of (x, y, string)
mp_obj_t m_segments; // List of (x, y, dx, dy, style, color)
mp_obj_t m_rects; // List of (x, y, w, h, color)
bool m_axesRequested;
bool m_axesAuto;
bool m_gridRequested;
};
}
#endif

View File

@@ -0,0 +1,73 @@
#include "plot_view.h"
namespace Matplotlib {
void PlotView::drawRect(KDContext * ctx, KDRect rect) const {
ctx->fillRect(rect, KDColorWhite);
if (m_store->gridRequested()) {
drawGrid(ctx, rect);
}
if (m_store->axesRequested()) {
drawAxes(ctx, rect);
drawLabelsAndGraduations(ctx, rect, Axis::Vertical, true);
drawLabelsAndGraduations(ctx, rect, Axis::Horizontal, true);
}
for (PlotStore::Dot dot : m_store->dots()) {
traceDot(ctx, rect, dot);
}
for (PlotStore::Label label : m_store->labels()) {
traceLabel(ctx, rect, label);
}
for (PlotStore::Segment segment : m_store->segments()) {
traceSegment(ctx, rect, segment);
}
for (PlotStore::Rect rectangle : m_store->rects()) {
traceRect(ctx, rect, rectangle);
}
}
void PlotView::traceDot(KDContext * ctx, KDRect r, PlotStore::Dot dot) const {
drawDot(ctx, r, dot.x(), dot.y(), dot.color());
}
void PlotView::traceSegment(KDContext * ctx, KDRect r, PlotStore::Segment segment) const {
drawSegment(
ctx, r,
segment.xStart(), segment.yStart(),
segment.xEnd(), segment.yEnd(),
segment.color()
);
if (segment.isArrow()) {
float dx = segment.xEnd() - segment.xStart();
float dy = segment.yEnd() - segment.yStart();
drawArrow(ctx, r, segment.xEnd(), segment.yEnd(), dx, dy, segment.color());
}
}
void PlotView::traceRect(KDContext * ctx, KDRect r, PlotStore::Rect rect) const {
KDRect pixelRect(
floatToPixel(Axis::Horizontal, rect.x()),
floatToPixel(Axis::Vertical, rect.y()),
rect.width() / pixelWidth(),
rect.height() / pixelHeight()
);
ctx->fillRect(pixelRect, rect.color());
}
void PlotView::traceLabel(KDContext * ctx, KDRect r, PlotStore::Label label) const {
drawLabel(ctx, r,
label.x(), label.y(), label.string(),
KDColorBlack,
RelativePosition::None,
RelativePosition::None
);
}
}

View File

@@ -0,0 +1,24 @@
#ifndef PYTHON_MATPLOTLIB_PLOT_VIEW_H
#define PYTHON_MATPLOTLIB_PLOT_VIEW_H
#include <apps/shared/labeled_curve_view.h>
#include "plot_store.h"
namespace Matplotlib {
class PlotView : public Shared::LabeledCurveView {
public:
PlotView(PlotStore * s) : Shared::LabeledCurveView(s), m_store(s) {}
void drawRect(KDContext * ctx, KDRect rect) const override;
private:
void traceDot(KDContext * ctx, KDRect r, PlotStore::Dot dot) const;
void traceSegment(KDContext * ctx, KDRect r, PlotStore::Segment segment) const;
void traceRect(KDContext * ctx, KDRect r, PlotStore::Rect rect) const;
void traceLabel(KDContext * ctx, KDRect r, PlotStore::Label label) const;
PlotStore * m_store;
};
}
#endif