[apps] Graph: add the maximum graph controller

This commit is contained in:
Émilie Feral
2018-01-17 10:34:21 +01:00
committed by EmilieNumworks
parent 6703fedf54
commit 6fecd091f4
6 changed files with 61 additions and 18 deletions

View File

@@ -41,25 +41,38 @@ double CartesianFunction::sumBetweenBounds(double start, double end, Poincare::C
return integral.approximateToScalar<double>(*context);
}
CartesianFunction::Point CartesianFunction::nextMinimumFrom(double start, double step, double max, Poincare::Context * context) const {
CartesianFunction::Point CartesianFunction::nextMinimumFrom(double start, double step, double max, Context * context) const {
return nextMinimumOfFunction(start, step, max, [](const Function * function, double x, Context * context) {
return function->evaluateAtAbscissa(x, context);
}, context);
}
CartesianFunction::Point CartesianFunction::nextMaximumFrom(double start, double step, double max, Context * context) const {
Point minimumOfOpposite = nextMinimumOfFunction(start, step, max, [](const Function * function, double x, Context * context) {
return -function->evaluateAtAbscissa(x, context);
}, context);
return {.abscissa = minimumOfOpposite.abscissa, .value = -minimumOfOpposite.value};
}
CartesianFunction::Point CartesianFunction::nextMinimumOfFunction(double start, double step, double max, Evaluation evaluate, Context * context) const {
double bracket[3];
Point result = {.abscissa = NAN, .value = NAN};
double x = start;
do {
bracketMinimum(x, step, max, context, bracket);
result = brentAlgorithm(bracket[0], bracket[2], context);
bracketMinimum(x, step, max, bracket, evaluate, context);
result = brentAlgorithm(bracket[0], bracket[2], evaluate, context);
x = bracket[1];
} while (std::isnan(result.abscissa) && (step > 0.0 ? x <= max : x >= max));
return result;
}
void CartesianFunction::bracketMinimum(double start, double step, double max, Poincare::Context * context, double result[3]) const {
void CartesianFunction::bracketMinimum(double start, double step, double max, double result[3], Evaluation evaluate, Context * context) const {
Point p[3];
p[0] = {.abscissa = start, .value = evaluateAtAbscissa(start, context)};
p[1] = {.abscissa = start+step, .value = evaluateAtAbscissa(start+step, context)};
p[0] = {.abscissa = start, .value = evaluate(this, start, context)};
p[1] = {.abscissa = start+step, .value = evaluate(this, start+step, context)};
double x = start+2.0*step;
while (step > 0.0 ? x <= max : x >= max) {
p[2] = {.abscissa = x, .value = evaluateAtAbscissa(x, context)};
p[2] = {.abscissa = x, .value = evaluate(this, x, context)};
if (p[0].value > p[1].value && p[2].value > p[1].value) {
result[0] = p[0].abscissa;
result[1] = p[1].abscissa;
@@ -82,9 +95,9 @@ char CartesianFunction::symbol() const {
return 'x';
}
CartesianFunction::Point CartesianFunction::brentAlgorithm(double ax, double bx, Context * context) const {
CartesianFunction::Point CartesianFunction::brentAlgorithm(double ax, double bx, Evaluation evaluate, Context * context) const {
if (ax > bx) {
return brentAlgorithm(bx, ax, context);
return brentAlgorithm(bx, ax, evaluate, context);
}
double e = 0.0;
double a = ax;
@@ -92,7 +105,7 @@ CartesianFunction::Point CartesianFunction::brentAlgorithm(double ax, double bx,
double x = a+k_goldenRatio*(b-a);
double v = x;
double w = x;
double fx = evaluateAtAbscissa(x, context);
double fx = evaluate(this, x, context);
double fw = fx;
double fv = fw;
@@ -104,10 +117,10 @@ CartesianFunction::Point CartesianFunction::brentAlgorithm(double ax, double bx,
double tol1 = k_sqrtEps*std::fabs(x)+1E-10;
double tol2 = 2.0*tol1;
if (std::fabs(x-m) <= tol2-0.5*(b-a)) {
double middleFax = evaluateAtAbscissa((x+a)/2.0, context);
double middleFbx = evaluateAtAbscissa((x+b)/2.0, context);
double fa = evaluateAtAbscissa(a, context);
double fb = evaluateAtAbscissa(b, context);
double middleFax = evaluate(this, (x+a)/2.0, context);
double middleFbx = evaluate(this, (x+b)/2.0, context);
double fa = evaluate(this, a, context);
double fb = evaluate(this, b, context);
if (middleFax-fa <= k_sqrtEps && fx-middleFax <= k_sqrtEps && fx-middleFbx <= k_sqrtEps && middleFbx-fb <= k_sqrtEps) {
Point result = {.abscissa = x, .value = fx};
return result;
@@ -140,7 +153,7 @@ CartesianFunction::Point CartesianFunction::brentAlgorithm(double ax, double bx,
d = k_goldenRatio*e;
}
u = x + (std::fabs(d) >= tol1 ? d : (d>0 ? tol1 : -tol1));
fu = evaluateAtAbscissa(u, context);
fu = evaluate(this, u, context);
if (fu <= fx) {
if (u<x) {
b = x;