diff --git a/apps/code/catalog.de.i18n b/apps/code/catalog.de.i18n index 2c942a56e..da6c16f99 100644 --- a/apps/code/catalog.de.i18n +++ b/apps/code/catalog.de.i18n @@ -108,100 +108,6 @@ PythonMonotonic = "Wert einer monotonen Uhr" PythonNumpyFunction = "numpy Modul-Präfix" PythonNumpyFftFunction = "numpy.fft Modul-Präfix" PythonNumpyLinalgFunction = "numpy.linalg Modul-Präfix" -PythonNumpyArray = "Konvertieren Sie ein Array in ndarray" -PythonNumpyArange = "Erstellen Sie eine Tabelle aus dem Bereich (i)" -PythonNumpyConcatenate = "Verketten Sie a und b" -PythonNumpyDiag = "Extrahiere oder konstruiere ein diagonales Array" -PythonNumpyZeros = "S-förmiges Array gefüllt mit 0" -PythonNumpyOnes = "S-förmiges Array gefüllt mit 1" -PythonNumpyEmpty = "Nicht initialisiertes Array der Form s" -PythonNumpyEye = "Tabelle mit Einsen auf der Diagonale und Nullen an anderer Stelle" -PythonNumpyFull = "S-förmiges Array gefüllt mit v" -PythonNumpyLinspace = "Zahlen, die über ein bestimmtes Intervall verteilt sind" -PythonNumpyLogspace = "Zahlen mit logarithmischem Abstand" -PythonNumpyCopy = "Kopie der Tabelle" -PythonNumpyDtype = "Tischtyp" -PythonNumpyFlat = "Flat-Array-Iterator" -PythonNumpyFlatten = "Abgeflachte Version der Tabelle" -PythonNumpyShape = "Holen Sie sich die Form des Arrays" -PythonNumpyReshape = "Array-Form durch s ersetzen" -PythonNumpySize = "Anzahl der Elemente im Array" -PythonNumpyTranspose = "Transponierte Version der Tabelle" -PythonNumpySortWithArguments = "Sortierte Version der Tabelle" -PythonNumpyNdinfo = "Informationen zu a . drucken" -PythonNumpyAll = "Testen Sie, ob alle Elemente von a trye sind" -PythonNumpyAny = "Teste, ob ein Element von a wahr ist" -PythonNumpyArgmax = "Index des Maximalwertes von a" -PythonNumpyArgmin = "Tiefgestellter Wert des Mindestwertes von a" -PythonNumpyArgsort = "Hinweise, die ein Array sortieren würden" -PythonNumpyClip = "Werte in einem Array ausschneiden" -PythonNumpyConvolve = "Diskrete lineare Faltung von a und b" -PythonNumpyDiff = "Abgeleitet von a" -PythonNumpyInterp = "Linear interpolierte Werte von a" -PythonNumpyDot = "Punktprodukt von a und b" -PythonNumpyCross = "Kreuzprodukt von a und b" -PythonNumpyEqual = "A == Element für Element" -PythonNumpyNot_equal = "A! = Element für Element" -PythonNumpyFlip = "Turnaround-Tabelle" -PythonNumpyIsfinite = "Testen Sie die Endlichkeit Element für Element" -PythonNumpyIsinf = "Teste die Unendlichkeit Element für Element" -PythonNumpyMean = "Durchschnitt d" -PythonNumpyMin = "Maximalwert von a" -PythonNumpyMax = "Mindestwert von a" -PythonNumpyMedian = "Medianwert von a" -PythonNumpyMinimum = "Minimale Array-Elemente pro Element" -PythonNumpyMaximum = "Maximum pro Element von Array-Elementen" -PythonNumpyPolyfit = "Polynomanpassung der kleinsten Quadrate" -PythonNumpyPolyval = "Bewerte ein Polynom bei bestimmten Werten" -PythonNumpyRoll = "Verschiebe den Inhalt von a um n" -PythonNumpySort = "Sortieren nach" -PythonNumpyStd = "Berechnen Sie die Standardabweichung von a" -PythonNumpySum = "Berechnen Sie die Summe von a" -PythonNumpyTrace = "Berechnen Sie die Summe der diagonalen Elemente von a" -PythonNumpyTrapz = "Integrieren Sie mit dem zusammengesetzten Trapezlineal" -PythonNumpyWhere = "Gibt Elemente aus x oder y gemäß c . zurück" -PythonNumpyVectorize = "Vektorisieren Sie die generische Python-Funktion f" -PythonNumpyAcos = "Wenden Sie acos Artikel für Artikel an" -PythonNumpyAcosh = "Wenden Sie acosh Artikel für Artikel an" -PythonNumpyArctan2 = "arctan2 Element für Element anwenden" -PythonNumpyAround = "Um das Element herum auftragen" -PythonNumpyAsin = "Element für Element anwenden" -PythonNumpyAsinh = "Wenden Sie asinh Element für Element an" -PythonNumpyAtan = "Wenden Sie ein Element für Element an" -PythonNumpyAtanh = "Wenden Sie atanh Element für Element an" -PythonNumpyCeil = "Bringen Sie die Decke nach Element an" -PythonNumpyCos = "Wenden Sie cos Element für Element an" -PythonNumpyCosh = "Wenden Sie cosh Element für Element an" -PythonNumpyDegrees = "Grade Element für Element anwenden" -PythonNumpyExp = "Exp pro Artikel anwenden" -PythonNumpyExpm1 = "Wenden Sie expm1 Element für Element an" -PythonNumpyFloor = "Boden nach Element auftragen" -PythonNumpyLog = "Tagebuch nach Artikel anwenden" -PythonNumpyLog10 = "Wenden Sie log10 Element für Element an" -PythonNumpyLog2 = "Wenden Sie log2 Element für Element an" -PythonNumpyRadians = "Wenden Sie Radiant pro Element an" -PythonNumpySin = "Wende Sünde nach Element an" -PythonNumpySinh = "Wenden Sie sinh Element für Element an" -PythonNumpySqrt = "Wenden Sie sqrt Element für Element an" -PythonNumpyTan = "Trage die Bräune nach Element auf" -PythonNumpyTanh = "Tanh pro Artikel auftragen" -PythonNumpyBool = "Bool Typ von numpy" -PythonNumpyFloat = "Float-Typ von numpy" -PythonNumpyUint8 = "Geben Sie uint8 von numpy . ein" -PythonNumpyInt8 = "Geben Sie int8 von numpy . ein" -PythonNumpyUint16 = "Geben Sie uint16 von numpy ein" -PythonNumpyInt16 = "Geben Sie int16 von numpy . ein" -PythonNumpyNan = "Nan-Darstellung von numpy" -PythonNumpyInf = "Inf-Darstellung von numpy" -PythonNumpyE = "2.718281828459045" -PythonNumpyPi = "3.141592653589793" -PythonNumpyFft = "Eindimensionale diskrete Fourier-Transformation" -PythonNumpyIfft = "Eindimensionale inverse diskrete Fourier-Transformation" -PythonNumpyDet = "Determinante von a" -PythonNumpyEig = "Eigenwerte und rechte Eigenvektoren von a" -PythonNumpyCholesky = "Cholesky-Zerlegung" -PythonNumpyInv = "Inverse Matrix a" -PythonNumpyNorm = "Matrix- oder Vektorstandard" PythonOct = "Ganzzahl in Oktal umwandeln" PythonPhase = "Phase von z" PythonPlot = "Plotten von y gegen x als Linien" diff --git a/apps/code/catalog.en.i18n b/apps/code/catalog.en.i18n index 09de24ccb..363dd820e 100644 --- a/apps/code/catalog.en.i18n +++ b/apps/code/catalog.en.i18n @@ -102,100 +102,6 @@ PythonMonotonic = "Value of a monotonic clock" PythonNumpyFunction = "numpy module prefix" PythonNumpyFftFunction = "numpy.fft module prefix" PythonNumpyLinalgFunction = "numpy.linalg module prefix" -PythonNumpyArray = "Convert an array to ndarray" -PythonNumpyArange = "Make a table from the range (i)" -PythonNumpyConcatenate = "Concatenate a and b" -PythonNumpyDiag = "Extract or construct a diagonal array" -PythonNumpyZeros = "S shape array filled with 0" -PythonNumpyOnes = "S shape array filled with 1" -PythonNumpyEmpty = "Uninitialized array of form s" -PythonNumpyEye = "Table with 1s on the diagonal and 0s elsewhere" -PythonNumpyFull = "S shape array filled with v" -PythonNumpyLinspace = "Numbers spaced over a specified interval" -PythonNumpyLogspace = "Numbers spaced on a logarithmic scale" -PythonNumpyCopy = "Copy of table" -PythonNumpyDtype = "Table type" -PythonNumpyFlat = "Flat array iterator" -PythonNumpyFlatten = "Flattened version of the table" -PythonNumpyShape = "Get the shape of the array" -PythonNumpyReshape = "Replace array shape with s" -PythonNumpySize = "Number of elements in the array" -PythonNumpyTranspose = "Transposed version of the table" -PythonNumpySortWithArguments = "Sorted version of the table" -PythonNumpyNdinfo = "Print information about a" -PythonNumpyAll = "Test if all elements of a are trye" -PythonNumpyAny = "Test if an element of a is true" -PythonNumpyArgmax = "Index of the maximum value of a" -PythonNumpyArgmin = "Subscript of the minimum value of a" -PythonNumpyArgsort = "Clues that would sort an array" -PythonNumpyClip = "Cut values in an array" -PythonNumpyConvolve = "Discrete linear convolution of a and b" -PythonNumpyDiff = "Derived from a" -PythonNumpyInterp = "Linearly interpolated values of a" -PythonNumpyDot = "Dot product of a and b" -PythonNumpyCross = "Cross product of a and b" -PythonNumpyEqual = "A == a element by element" -PythonNumpyNot_equal = "A! = A element by element" -PythonNumpyFlip = "Turnaround table" -PythonNumpyIsfinite = "Test the finiteness element by element" -PythonNumpyIsinf = "Test the infinity element by element" -PythonNumpyMean = "Average d" -PythonNumpyMin = "Maximum value of a" -PythonNumpyMax = "Minimum value of a" -PythonNumpyMedian = "Median value of a" -PythonNumpyMinimum = "Minimum array elements per element" -PythonNumpyMaximum = "Maximum per element of array elements" -PythonNumpyPolyfit = "Least squares polynomial fit" -PythonNumpyPolyval = "Evaluate a polynomial at specific values" -PythonNumpyRoll = "Shift the content of a by n" -PythonNumpySort = "Sort to" -PythonNumpyStd = "Calculate the standard deviation of a" -PythonNumpySum = "Calculate the sum of a" -PythonNumpyTrace = "Calculate the sum of the diagonal elements of a" -PythonNumpyTrapz = "Integrate using the composite trapezoidal ruler" -PythonNumpyWhere = "Returns elements chosen from x or y according to c" -PythonNumpyVectorize = "Vectorize the generic python function f" -PythonNumpyAcos = "Apply acos item by item" -PythonNumpyAcosh = "Apply acosh item by item" -PythonNumpyArctan2 = "Apply arctan2 element by element" -PythonNumpyAround = "Apply around the element" -PythonNumpyAsin = "Apply asin element by element" -PythonNumpyAsinh = "Apply asinh element by element" -PythonNumpyAtan = "Apply one item by item" -PythonNumpyAtanh = "Apply atanh element by element" -PythonNumpyCeil = "Apply the ceiling by element" -PythonNumpyCos = "Apply cos element by element" -PythonNumpyCosh = "Apply cosh element by element" -PythonNumpyDegrees = "Apply degrees element by element" -PythonNumpyExp = "Apply exp per item" -PythonNumpyExpm1 = "Apply expm1 element by element" -PythonNumpyFloor = "Apply soil by element" -PythonNumpyLog = "Apply journal by item" -PythonNumpyLog10 = "Apply log10 element by element" -PythonNumpyLog2 = "Apply log2 element by element" -PythonNumpyRadians = "Apply radians per element" -PythonNumpySin = "Apply sin by element" -PythonNumpySinh = "Apply sinh element by element" -PythonNumpySqrt = "Apply sqrt element by element" -PythonNumpyTan = "Apply the tan by element" -PythonNumpyTanh = "Apply tanh per item" -PythonNumpyBool = "Bool type of numpy" -PythonNumpyFloat = "Float type of numpy" -PythonNumpyUint8 = "Type uint8 of numpy" -PythonNumpyInt8 = "Type int8 of numpy" -PythonNumpyUint16 = "Type uint16 from numpy" -PythonNumpyInt16 = "Type int16 of numpy" -PythonNumpyNan = "Nan representation of numpy" -PythonNumpyInf = "Inf representation of numpy" -PythonNumpyE = "2.718281828459045" -PythonNumpyPi = "3.141592653589793" -PythonNumpyFft = "One-dimensional discrete fourier transform" -PythonNumpyIfft = "One-dimensional inverse discrete fourier transform" -PythonNumpyDet = "Determinant of a" -PythonNumpyEig = "Eigenvalues and right eigenvectors of a" -PythonNumpyCholesky = "Cholesky decomposition" -PythonNumpyInv = "Inverse matrix a" -PythonNumpyNorm = "Matrix or vector standard" PythonOct = "Convert integer to octal" PythonPhase = "Phase of z" PythonPlot = "Plot y versus x as lines" diff --git a/apps/code/catalog.es.i18n b/apps/code/catalog.es.i18n index 48bff282b..d39456839 100644 --- a/apps/code/catalog.es.i18n +++ b/apps/code/catalog.es.i18n @@ -102,100 +102,6 @@ PythonMonotonic = "Value of a monotonic clock" PythonNumpyFunction = "numpy module prefix" PythonNumpyFftFunction = "numpy.fft module prefix" PythonNumpyLinalgFunction = "numpy.linalg module prefix" -PythonNumpyArray = "Convertir una matriz a ndarray" -PythonNumpyArange = "Haz una tabla de la gama (i)" -PythonNumpyConcatenate = "Concatenar ayb" -PythonNumpyDiag = "Extraer o construir una matriz diagonal" -PythonNumpyZeros = "Matriz en forma de S rellena con 0" -PythonNumpyOnes = "Matriz en forma de S llena con 1" -PythonNumpyEmpty = "Matriz no inicializada de formulario s" -PythonNumpyEye = "Tabla con 1 en la diagonal y 0 en el resto" -PythonNumpyFull = "Matriz en forma de S rellena con v" -PythonNumpyLinspace = "Números espaciados en un intervalo específico" -PythonNumpyLogspace = "Números espaciados en una escala logarítmica" -PythonNumpyCopy = "Copia de la tabla" -PythonNumpyDtype = "Tipo de mesa" -PythonNumpyFlat = "Iterador de matriz plana" -PythonNumpyFlatten = "Versión aplanada de la mesa." -PythonNumpyShape = "Obtén la forma de la matriz" -PythonNumpyReshape = "Reemplazar la forma de la matriz con s" -PythonNumpySize = "Número de elementos en la matriz" -PythonNumpyTranspose = "Versión transpuesta de la tabla" -PythonNumpySortWithArguments = "Versión ordenada de la tabla" -PythonNumpyNdinfo = "Imprimir información sobre un" -PythonNumpyAll = "Prueba si todos los elementos de a son probables" -PythonNumpyAny = "Prueba si un elemento de a es verdadero" -PythonNumpyArgmax = "Índice del valor máximo de un" -PythonNumpyArgmin = "Subíndice del valor mínimo de un" -PythonNumpyArgsort = "Pistas que ordenarían una matriz" -PythonNumpyClip = "Cortar valores en una matriz" -PythonNumpyConvolve = "Convolución lineal discreta de ayb" -PythonNumpyDiff = "Derivado de un" -PythonNumpyInterp = "Valores interpolados linealmente de a" -PythonNumpyDot = "Producto escalar de ayb" -PythonNumpyCross = "Producto cruzado de ayb" -PythonNumpyEqual = "A == un elemento por elemento" -PythonNumpyNot_equal = "A! = Un elemento por elemento" -PythonNumpyFlip = "Tabla de cambio" -PythonNumpyIsfinite = "Prueba la finitud elemento por elemento" -PythonNumpyIsinf = "Prueba el infinito elemento por elemento" -PythonNumpyMean = "Promedio d" -PythonNumpyMin = "Valor máximo de un" -PythonNumpyMax = "Valor mínimo de un" -PythonNumpyMedian = "Valor mediano de a" -PythonNumpyMinimum = "Elementos de matriz mínimos por elemento" -PythonNumpyMaximum = "Máximo por elemento de elementos de matriz" -PythonNumpyPolyfit = "Ajuste de polinomio de mínimos cuadrados" -PythonNumpyPolyval = "Evaluar un polinomio en valores específicos" -PythonNumpyRoll = "Cambiar el contenido de a por n" -PythonNumpySort = "Ordenar por" -PythonNumpyStd = "Calcule la desviación estándar de un" -PythonNumpySum = "Calcule la suma de a" -PythonNumpyTrace = "Calcule la suma de los elementos diagonales de un" -PythonNumpyTrapz = "Integrar usando la regla trapezoidal compuesta" -PythonNumpyWhere = "Devuelve elementos elegidos de xoy según c" -PythonNumpyVectorize = "Vectorizar la función genérica de python f" -PythonNumpyAcos = "Aplicar acos artículo por artículo" -PythonNumpyAcosh = "Aplicar un elemento por elemento" -PythonNumpyArctan2 = "Aplicar arctan2 elemento por elemento" -PythonNumpyAround = "Aplicar alrededor del elemento" -PythonNumpyAsin = "Aplicar asin elemento por elemento" -PythonNumpyAsinh = "Aplicar asinh elemento por elemento" -PythonNumpyAtan = "Aplicar un artículo por artículo" -PythonNumpyAtanh = "Aplicar atanh elemento por elemento" -PythonNumpyCeil = "Aplicar el techo por elemento" -PythonNumpyCos = "Aplicar cos elemento por elemento" -PythonNumpyCosh = "Aplicar cosh elemento por elemento" -PythonNumpyDegrees = "Aplicar grados elemento por elemento" -PythonNumpyExp = "Aplicar exp por artículo" -PythonNumpyExpm1 = "Aplicar expm1 elemento por elemento" -PythonNumpyFloor = "Aplicar suelo por elemento" -PythonNumpyLog = "Aplicar diario por artículo" -PythonNumpyLog10 = "Aplicar log10 elemento por elemento" -PythonNumpyLog2 = "Aplicar log2 elemento por elemento" -PythonNumpyRadians = "Aplicar radianes por elemento" -PythonNumpySin = "Aplicar el pecado por elemento" -PythonNumpySinh = "Aplicar sinh elemento por elemento" -PythonNumpySqrt = "Aplicar elemento sqrt por elemento" -PythonNumpyTan = "Aplicar el bronceado por elemento" -PythonNumpyTanh = "Aplicar tanh por artículo" -PythonNumpyBool = "Bool tipo de numpy" -PythonNumpyFloat = "Flotador tipo de numpy" -PythonNumpyUint8 = "Escriba uint8 de numpy" -PythonNumpyInt8 = "Escriba int8 de numpy" -PythonNumpyUint16 = "Escriba uint16 desde numpy" -PythonNumpyInt16 = "Escriba int16 de numpy" -PythonNumpyNan = "Nan representación de numpy" -PythonNumpyInf = "Inf representación de numpy" -PythonNumpyE = "2.718281828459045" -PythonNumpyPi = "3.141592653589793" -PythonNumpyFft = "Transformada de Fourier discreta unidimensional" -PythonNumpyIfft = "Transformada de Fourier discreta inversa unidimensional" -PythonNumpyDet = "Determinante de un" -PythonNumpyEig = "Autovalores y autovectores derechos de un" -PythonNumpyCholesky = "Descomposición de Cholesky" -PythonNumpyInv = "Matriz inversa a" -PythonNumpyNorm = "Matriz o estándar vectorial" PythonOct = "Convert integer to octal" PythonPhase = "Phase of z" PythonPlot = "Plot y versus x as lines" diff --git a/apps/code/catalog.fr.i18n b/apps/code/catalog.fr.i18n index 5846f7c4a..d8d9daced 100644 --- a/apps/code/catalog.fr.i18n +++ b/apps/code/catalog.fr.i18n @@ -102,100 +102,6 @@ PythonMonotonic = "Renvoie la valeur de l'horloge" PythonNumpyFunction = "Préfixe fonction du module numpy" PythonNumpyFftFunction = "Préfixe fonction du module numpy.fft" PythonNumpyLinalgFunction = "Préfixe fonction du module numpy.linalg" -PythonNumpyArray = "Convertir un tableau en ndarray" -PythonNumpyArange = "Faire un tableau à partir de la plage (i)" -PythonNumpyConcatenate = "Concaténer a et b" -PythonNumpyDiag = "Extraire ou construire un tableau diagonal" -PythonNumpyZeros = "Tableau de forme s rempli de 0" -PythonNumpyOnes = "Tableau de forme s rempli de 1" -PythonNumpyEmpty = "Tableau uninitialisé de forme s" -PythonNumpyEye = "Tableau avec des 1 sur la diagonale et des 0 ailleurs" -PythonNumpyFull = "Tableau de forme s rempli de v" -PythonNumpyLinspace = "Nombres espacés sur un intervalle spécifié" -PythonNumpyLogspace = "Nombres espacés sur une échelle logarithmique" -PythonNumpyCopy = "Copie du tableau" -PythonNumpyDtype = "Dtype du tableau" -PythonNumpyFlat = "Itérateur plat du tableau" -PythonNumpyFlatten = "Version aplatie du tableau" -PythonNumpyShape = "Obtenir la forme du tableau" -PythonNumpyReshape = "Remplacer la forme du tableau par s" -PythonNumpySize = "Nombre d'éléments dans le tableau" -PythonNumpyTranspose = "Version transposée du tableau" -PythonNumpySortWithArguments = "Version triée du tableau" -PythonNumpyNdinfo = "Imprimer des informations sur un" -PythonNumpyAll = "Tester si tous les éléments de a sont trye" -PythonNumpyAny = "Tester si un élément de a est vrai" -PythonNumpyArgmax = "Indice de la valeur maximale de a" -PythonNumpyArgmin = "Indice de la valeur minimale de a" -PythonNumpyArgsort = "Indices qui trieraient un tableau" -PythonNumpyClip = "Couper les valeurs dans un tableau" -PythonNumpyConvolve = "Convolution linéaire discrète de a et b" -PythonNumpyDiff = "Dérivée du a" -PythonNumpyInterp = "Valeurs interpolées linéairement de a" -PythonNumpyDot = "Produit scalaire de a et b" -PythonNumpyCross = "Produit vectoriel de a et b" -PythonNumpyEqual = "a == a élément par élément" -PythonNumpyNot_equal = "a != a élément par élément" -PythonNumpyFlip = "Tableau de retournement" -PythonNumpyIsfinite = "Testez la finitude élément par élément" -PythonNumpyIsinf = "Testez l'infinité élément par élément" -PythonNumpyMean = "Moyenne d" -PythonNumpyMin = "Valeur maximale de a" -PythonNumpyMax = "Valeur minimale de a" -PythonNumpyMedian = "Valeur médiane de a" -PythonNumpyMinimum = "Minimum d'éléments de tableau par élément" -PythonNumpyMaximum = "Maximum par élément d'éléments de tableau" -PythonNumpyPolyfit = "Ajustement polynomial des moindres carrés" -PythonNumpyPolyval = "Évaluer un polynôme à des valeurs spécifiques" -PythonNumpyRoll = "Décaler le contenu de a par n" -PythonNumpySort = "Trier a" -PythonNumpyStd = "Calculer l'écart type de a" -PythonNumpySum = "Calculer la somme de a" -PythonNumpyTrace = "Calculer la somme des éléments diagonaux de a" -PythonNumpyTrapz = "Intégrer à l'aide de la règle trapézoïdale composite" -PythonNumpyWhere = "Renvoie des éléments choisis parmi x ou y selon c" -PythonNumpyVectorize = "Vectoriser la fonction python générique f" -PythonNumpyAcos = "Appliquer acos élément par élément" -PythonNumpyAcosh = "Appliquer acosh élément par élément" -PythonNumpyArctan2 = "Appliquer arctan2 élément par élément" -PythonNumpyAround = "Appliquer autour de l'élément" -PythonNumpyAsin = "Appliquer asin élément par élément" -PythonNumpyAsinh = "Appliquer asinh élément par élément" -PythonNumpyAtan = "Appliquer un élément par élément" -PythonNumpyAtanh = "Appliquer atanh élément par élément" -PythonNumpyCeil = "Appliquer le plafond par élément" -PythonNumpyCos = "Appliquer cos élément par élément" -PythonNumpyCosh = "Appliquer cosh élément par élément" -PythonNumpyDegrees = "Appliquer des degrés élément par élément" -PythonNumpyExp = "Appliquer exp par élément" -PythonNumpyExpm1 = "Appliquer expm1 élément par élément" -PythonNumpyFloor = "Appliquer le sol par élément" -PythonNumpyLog = "Appliquer le journal par élément" -PythonNumpyLog10 = "Appliquer log10 élément par élément" -PythonNumpyLog2 = "Appliquer log2 élément par élément" -PythonNumpyRadians = "Appliquer des radians par élément" -PythonNumpySin = "Appliquer le péché par élément" -PythonNumpySinh = "Appliquer sinh élément par élément" -PythonNumpySqrt = "Appliquer sqrt élément par élément" -PythonNumpyTan = "Appliquer le bronzage par élément" -PythonNumpyTanh = "Appliquer tanh par élément" -PythonNumpyBool = "Type bool de numpy" -PythonNumpyFloat = "Type float de numpy" -PythonNumpyUint8 = "Tapez uint8 de numpy" -PythonNumpyInt8 = "Tapez int8 de numpy" -PythonNumpyUint16 = "Tapez uint16 de numpy" -PythonNumpyInt16 = "Tapez int16 de numpy" -PythonNumpyNan = "Nan représentation de numpy" -PythonNumpyInf = "Inf représentation de numpy" -PythonNumpyE = "2.718281828459045" -PythonNumpyPi = "3.141592653589793" -PythonNumpyFft = "Transformée de Fourier discrète à une dimension" -PythonNumpyIfft = "Transformée de Fourier discrète inverse unidimensionnelle" -PythonNumpyDet = "Déterminant de a" -PythonNumpyEig = "Valeurs propres et vecteurs propres droits de a" -PythonNumpyCholesky = "Décomposition de Cholesky" -PythonNumpyInv = "Matrice inverse a" -PythonNumpyNorm = "Norme matricielle ou vectorielle" PythonOct = "Conversion en octal" PythonPhase = "Argument de z" PythonPlot = "Trace y en fonction de x" diff --git a/apps/code/catalog.hu.i18n b/apps/code/catalog.hu.i18n index f5365e633..b2011816b 100644 --- a/apps/code/catalog.hu.i18n +++ b/apps/code/catalog.hu.i18n @@ -102,100 +102,6 @@ PythonMonotonic = "Az óra értékét adja vissza" PythonNumpyFunction = "numpy elötag" PythonNumpyFftFunction = "numpy.fft elötag" PythonNumpyLinalgFunction = "numpy.linalg elötag" -PythonNumpyArray = "Egy tömb konvertálása ndarray -re" -PythonNumpyArange = "Készítsen táblázatot az (i) tartományból" -PythonNumpyConcatenate = "Összekapcsolás a és b" -PythonNumpyDiag = "Bontson ki vagy készítsen átlós tömböt" -PythonNumpyZeros = "S alakú tömb 0 -val kitöltve" -PythonNumpyOnes = "S alakú tömb 1-el" -PythonNumpyEmpty = "Az űrlap inicializálatlan tömbje" -PythonNumpyEye = "Asztal 1 -es átlóval és 0 -val máshol" -PythonNumpyFull = "S alakú tömb tele v" -PythonNumpyLinspace = "Számok meghatározott intervallumon belül" -PythonNumpyLogspace = "A számok logaritmikus skálán helyezkednek el" -PythonNumpyCopy = "A táblázat másolata" -PythonNumpyDtype = "Táblázat típusa" -PythonNumpyFlat = "Lapos tömb iterátor" -PythonNumpyFlatten = "Az asztal lapított változata" -PythonNumpyShape = "Szerezd meg a tömb alakját" -PythonNumpyReshape = "Cserélje le a tömb alakját az s -vel" -PythonNumpySize = "A tömb elemeinek száma" -PythonNumpyTranspose = "A táblázat átültetett változata" -PythonNumpySortWithArguments = "A táblázat rendezett változata" -PythonNumpyNdinfo = "Információk nyomtatása a" -PythonNumpyAll = "Ellenőrizze, hogy egy elem minden eleme trye" -PythonNumpyAny = "Ellenőrizze, hogy az a eleme igaz -e" -PythonNumpyArgmax = "A maximális érték indexe a" -PythonNumpyArgmin = "A minimális értékének a indexe" -PythonNumpyArgsort = "Nyomok, amelyek rendeznek egy tömböt" -PythonNumpyClip = "Vágja le az értékeket egy tömbben" -PythonNumpyConvolve = "A és b diszkrét lineáris konvolúciója" -PythonNumpyDiff = "Származik a" -PythonNumpyInterp = "A lineárisan interpolált értékei" -PythonNumpyDot = "Az a és b pontszerű szorzata" -PythonNumpyCross = "Az a és b keresztterméke" -PythonNumpyEqual = "A == elemenként" -PythonNumpyNot_equal = "A! = Elemenként" -PythonNumpyFlip = "Fordulóasztal" -PythonNumpyIsfinite = "Tesztelje a végességet elemenként" -PythonNumpyIsinf = "Tesztelje a végtelen elemet elemenként" -PythonNumpyMean = "Átlagos d" -PythonNumpyMin = "Maximális értéke a" -PythonNumpyMax = "Minimális értéke a" -PythonNumpyMedian = "Medián értéke a" -PythonNumpyMinimum = "Minimális tömb elemek elemenként" -PythonNumpyMaximum = "Maximum tömb elemenként" -PythonNumpyPolyfit = "Legkevesebb négyzet polinom illeszkedés" -PythonNumpyPolyval = "Polinom értékelése meghatározott értékeken" -PythonNumpyRoll = "Az a tartalmának eltolása n -vel" -PythonNumpySort = "Rendezés ide" -PythonNumpyStd = "Számítsa ki a szórását a" -PythonNumpySum = "Számítsa ki a összegét" -PythonNumpyTrace = "Számítsa ki az a átlós elemeinek összegét!" -PythonNumpyTrapz = "Integrálja az összetett trapéz vonalzó használatával" -PythonNumpyWhere = "A c szerint x vagy y közül választott elemeket adja vissza" -PythonNumpyVectorize = "Vektorizálja az általános python függvényt f" -PythonNumpyAcos = "Alkalmazza az acos -t elemenként" -PythonNumpyAcosh = "Alkalmazza az elemeket elemenként" -PythonNumpyArctan2 = "Alkalmazza az arctan2 elemet elemenként" -PythonNumpyAround = "Alkalmazza az elem körül" -PythonNumpyAsin = "Alkalmazza az asszonyt elemenként" -PythonNumpyAsinh = "Alkalmazza az elemet elemenként" -PythonNumpyAtan = "Alkalmazzon egy elemet elemenként" -PythonNumpyAtanh = "Alkalmazza az atanh elemenként" -PythonNumpyCeil = "Alkalmazza a mennyezetet elemenként" -PythonNumpyCos = "Alkalmazza a cos elemet elemenként" -PythonNumpyCosh = "Alkalmazza a cosh elemet elemenként" -PythonNumpyDegrees = "Alkalmazza a fokokat elemenként" -PythonNumpyExp = "Alkalmazza az exp -ot elemenként" -PythonNumpyExpm1 = "Alkalmazza az expm1 elemet elemenként" -PythonNumpyFloor = "A talajt elemenként vigye fel" -PythonNumpyLog = "Napló alkalmazása tétel szerint" -PythonNumpyLog10 = "Alkalmazza a log10 elemet elemenként" -PythonNumpyLog2 = "Alkalmazza a log2 elemet elemenként" -PythonNumpyRadians = "Alkalmazzon radiánt elemenként" -PythonNumpySin = "Alkalmazza a bűnt elemenként" -PythonNumpySinh = "Alkalmazza a sinh elemet elemenként" -PythonNumpySqrt = "Alkalmazza az sqrt elemet elemenként" -PythonNumpyTan = "Vigye fel a barnulást elemenként" -PythonNumpyTanh = "Alkalmazzon tannt elemenként" -PythonNumpyBool = "Bull típusú numpy" -PythonNumpyFloat = "Lebegő típusú számológép" -PythonNumpyUint8 = "Írja be az uint8 számot" -PythonNumpyInt8 = "Írja be a numpy int8 típusát" -PythonNumpyUint16 = "Írja be az uint16 parancsot a numpy -ból" -PythonNumpyInt16 = "Írja be a numpy int16 típusát" -PythonNumpyNan = "A numpy nanos ábrázolása" -PythonNumpyInf = "A numpy inf ábrázolása" -PythonNumpyE = "2.718281828459045" -PythonNumpyPi = "3.141592653589793" -PythonNumpyFft = "Egydimenziós diszkrét Fourier-transzformáció" -PythonNumpyIfft = "Egydimenziós inverz diszkrét Fourier-transzformáció" -PythonNumpyDet = "Meghatározó a" -PythonNumpyEig = "Sajátértékek és jobb sajátvektorok a" -PythonNumpyCholesky = "Cholesky bomlás" -PythonNumpyInv = "Fordított mátrix a" -PythonNumpyNorm = "Mátrix vagy vektor standard" PythonOct = "Decimális szám konvertálása octális számra" PythonPhase = "z fázisa" PythonPlot = "y-t jelöli x függvényében" diff --git a/apps/code/catalog.it.i18n b/apps/code/catalog.it.i18n index 9402ad69a..8627e679c 100644 --- a/apps/code/catalog.it.i18n +++ b/apps/code/catalog.it.i18n @@ -108,100 +108,6 @@ PythonMonotonic = "Restituisce il valore dell'orologio" PythonNumpyFunction = "Prefisso modulo numpy" PythonNumpyFftFunction = "Prefisso modulo numpy.fft" PythonNumpyLinalgFunction = "Prefisso modulo numpy.linalg" -PythonNumpyArray = "Converti un array in ndarray" -PythonNumpyArange = "Crea una tabella dall'intervallo (i)" -PythonNumpyConcatenate = "Concatena a e b" -PythonNumpyDiag = "Estrai o costruisci un array diagonale" -PythonNumpyZeros = "Matrice a forma di S riempita con 0" -PythonNumpyOnes = "Array a forma di S riempito con 1" -PythonNumpyEmpty = "Matrice non inizializzata della forma s" -PythonNumpyEye = "Tabella con 1 in diagonale e 0 altrove" -PythonNumpyFull = "Matrice a forma di S riempita con v" -PythonNumpyLinspace = "Numeri spaziati su un intervallo specificato" -PythonNumpyLogspace = "Numeri spaziati su una scala logaritmica" -PythonNumpyCopy = "Copia della tabella" -PythonNumpyDtype = "Tipo di tabella" -PythonNumpyFlat = "Iteratore flat array" -PythonNumpyFlatten = "Versione appiattita del tavolo" -PythonNumpyShape = "Ottieni la forma dell'array" -PythonNumpyReshape = "Sostituisci la forma dell'array con s" -PythonNumpySize = "Numero di elementi nell'array" -PythonNumpyTranspose = "Versione trasposta della tabella" -PythonNumpySortWithArguments = "Versione ordinata della tabella" -PythonNumpyNdinfo = "Stampa informazioni su a" -PythonNumpyAll = "Verifica se tutti gli elementi di a sono provati" -PythonNumpyAny = "Verifica se un elemento di a è vero" -PythonNumpyArgmax = "Indice del valore massimo di a" -PythonNumpyArgmin = "Pedice del valore minimo di a" -PythonNumpyArgsort = "Indizi che ordinerebbero un array" -PythonNumpyClip = "Taglia i valori in un array" -PythonNumpyConvolve = "Convoluzione lineare discreta di a e b" -PythonNumpyDiff = "Derivato da a" -PythonNumpyInterp = "Valori interpolati linearmente di a" -PythonNumpyDot = "Prodotto scalare di a e b" -PythonNumpyCross = "Prodotto incrociato di a e b" -PythonNumpyEqual = "A == un elemento per elemento" -PythonNumpyNot_equal = "A! = Un elemento per elemento" -PythonNumpyFlip = "Tavolo di turnaround" -PythonNumpyIsfinite = "Testa la finitezza elemento per elemento" -PythonNumpyIsinf = "Prova l'infinito elemento per elemento" -PythonNumpyMean = "d . medio" -PythonNumpyMin = "Valore massimo di a" -PythonNumpyMax = "Valore minimo di a" -PythonNumpyMedian = "Valore medio di a" -PythonNumpyMinimum = "Elementi minimi dell'array per elemento" -PythonNumpyMaximum = "Massimo per elemento di elementi dell'array" -PythonNumpyPolyfit = "Approssimazione polinomiale ai minimi quadrati" -PythonNumpyPolyval = "Valuta un polinomio a valori specifici" -PythonNumpyRoll = "Sposta il contenuto di a di n" -PythonNumpySort = "Ordina per" -PythonNumpyStd = "Calcola la deviazione standard di a" -PythonNumpySum = "Calcola la somma di a" -PythonNumpyTrace = "Calcola la somma degli elementi diagonali di a" -PythonNumpyTrapz = "Integrare utilizzando il righello trapezoidale composito" -PythonNumpyWhere = "Restituisce elementi scelti da x o y secondo c" -PythonNumpyVectorize = "Vettorizza la funzione Python generica f" -PythonNumpyAcos = "Applica acos articolo per articolo" -PythonNumpyAcosh = "Applica acosh articolo per articolo" -PythonNumpyArctan2 = "Applica arctan2 elemento per elemento" -PythonNumpyAround = "Applicare intorno all'elemento" -PythonNumpyAsin = "Applica asin elemento per elemento" -PythonNumpyAsinh = "Applica asinh elemento per elemento" -PythonNumpyAtan = "Applicare un articolo per articolo" -PythonNumpyAtanh = "Applicare atanh elemento per elemento" -PythonNumpyCeil = "Applicare il soffitto per elemento" -PythonNumpyCos = "Applica cos elemento per elemento" -PythonNumpyCosh = "Applicare cosh elemento per elemento" -PythonNumpyDegrees = "Applica gradi elemento per elemento" -PythonNumpyExp = "Applica esperienza per articolo" -PythonNumpyExpm1 = "Applica expm1 elemento per elemento" -PythonNumpyFloor = "Applicare terreno per elemento" -PythonNumpyLog = "Applica giornale per articolo" -PythonNumpyLog10 = "Applica log10 elemento per elemento" -PythonNumpyLog2 = "Applica log2 elemento per elemento" -PythonNumpyRadians = "Applica radianti per elemento" -PythonNumpySin = "Applica sin per elemento" -PythonNumpySinh = "Applica sinh elemento per elemento" -PythonNumpySqrt = "Applica sqrt elemento per elemento" -PythonNumpyTan = "Applicare l'abbronzatura per elemento" -PythonNumpyTanh = "Applicare tanh per articolo" -PythonNumpyBool = "Tipo bool di numpy" -PythonNumpyFloat = "Tipo galleggiante di numpy" -PythonNumpyUint8 = "Digita uint8 di numpy" -PythonNumpyInt8 = "Digita int8 di numpy" -PythonNumpyUint16 = "Digita uint16 da numpy" -PythonNumpyInt16 = "Digita int16 di numpy" -PythonNumpyNan = "Nan rappresentazione di numpy" -PythonNumpyInf = "Inf rappresentazione di numpy" -PythonNumpyE = "2.718281828459045" -PythonNumpyPi = "3.141592653589933" -PythonNumpyFft = "Trasformata di Fourier discreta unidimensionale" -PythonNumpyIfft = "Trasformata di Fourier discreta inversa unidimensionale" -PythonNumpyDet = "Determinante di a" -PythonNumpyEig = "Autovalori e autovettori giusti di a" -PythonNumpyCholesky = "Decomposizione Cholesky" -PythonNumpyInv = "matrice inversa a" -PythonNumpyNorm = "Matrice o standard vettoriale" PythonOct = "Conversione in ottale" PythonPhase = "Argomento di z" PythonPlot = "Disegna y in f. di x come linee" diff --git a/apps/code/catalog.nl.i18n b/apps/code/catalog.nl.i18n index fa54b6bc1..f46b4606f 100644 --- a/apps/code/catalog.nl.i18n +++ b/apps/code/catalog.nl.i18n @@ -108,100 +108,6 @@ PythonMonotonic = "Waarde van een monotone klok" PythonNumpyFunction = "numpy module prefix" PythonNumpyFftFunction = "numpy.fft module prefix" PythonNumpyLinalgFunction = "numpy.linalg module prefix" -PythonNumpyArray = "Converteer een array naar ndarray" -PythonNumpyArange = "Maak een tabel uit de reeks (i)" -PythonNumpyConcatenate = "Samenvoegen a en b" -PythonNumpyDiag = "Een diagonale array extraheren of construeren" -PythonNumpyZeros = "S-vormarray gevuld met 0" -PythonNumpyOnes = "S-vormige array gevuld met 1" -PythonNumpyEmpty = "Niet-geïnitialiseerde matrix van vorm s" -PythonNumpyEye = "Tabel met enen op de diagonaal en nullen elders" -PythonNumpyFull = "S-vormarray gevuld met v" -PythonNumpyLinspace = "Getallen verdeeld over een opgegeven interval" -PythonNumpyLogspace = "Getallen op een logaritmische schaal verdeeld" -PythonNumpyCopy = "Kopie van tabel" -PythonNumpyDtype = "Tafeltype:" -PythonNumpyFlat = "Flat array iterator" -PythonNumpyFlatten = "Afgeplatte versie van de tafel" -PythonNumpyShape = "De vorm van de array verkrijgen" -PythonNumpyReshape = "Vervang matrixvorm door s" -PythonNumpySize = "Aantal elementen in de array" -PythonNumpyTranspose = "Getransponeerde versie van de tabel" -PythonNumpySortWithArguments = "Gesorteerde versie van de tafel" -PythonNumpyNdinfo = "Informatie afdrukken over a" -PythonNumpyAll = "Test of alle elementen van a trye zijn" -PythonNumpyAny = "Test of een element van a waar is" -PythonNumpyArgmax = "Index van de maximale waarde van a" -PythonNumpyArgmin = "Subscript van de minimumwaarde van a" -PythonNumpyArgsort = "Aanwijzingen die een array zouden sorteren" -PythonNumpyClip = "Knip waarden in een array" -PythonNumpyConvolve = "Discrete lineaire convolutie van a en b" -PythonNumpyDiff = "Afgeleid van a" -PythonNumpyInterp = "Lineair geïnterpoleerde waarden van a" -PythonNumpyDot = "Puntproduct van a en b" -PythonNumpyCross = "Kruisproduct van a en b" -PythonNumpyEqual = "A == een element voor element" -PythonNumpyNot_equal = "A! = Een element voor element" -PythonNumpyFlip = "Omslagtabel" -PythonNumpyIsfinite = "Test de eindigheid element voor element" -PythonNumpyIsinf = "Test het oneindige element voor element" -PythonNumpyMean = "gemiddelde d" -PythonNumpyMin = "Maximale waarde van a" -PythonNumpyMax = "Minimale waarde van a" -PythonNumpyMedian = "Mediane waarde van a" -PythonNumpyMinimum = "Minimum array-elementen per element" -PythonNumpyMaximum = "Maximum per element van array-elementen" -PythonNumpyPolyfit = "Kleinste kwadraten polynoom fit" -PythonNumpyPolyval = "Een polynoom evalueren op specifieke waarden" -PythonNumpyRoll = "Verschuif de inhoud van a met n" -PythonNumpySort = "Sorteren op" -PythonNumpyStd = "Bereken de standaarddeviatie van a" -PythonNumpySum = "Bereken de som van a" -PythonNumpyTrace = "Bereken de som van de diagonale elementen van a" -PythonNumpyTrapz = "Integreer met behulp van de samengestelde trapeziumvormige liniaal" -PythonNumpyWhere = "Retourneert elementen gekozen uit x of y volgens c" -PythonNumpyVectorize = "Vectoriseer de generieke python-functie f" -PythonNumpyAcos = "Acos item per item toepassen" -PythonNumpyAcosh = "Acosh item voor item toepassen" -PythonNumpyArctan2 = "Arctan2 element voor element toepassen" -PythonNumpyAround = "Toepassen rond het element" -PythonNumpyAsin = "Asin element voor element toepassen" -PythonNumpyAsinh = "Asinh element voor element toepassen" -PythonNumpyAtan = "Eén item per item toepassen" -PythonNumpyAtanh = "Atanh element voor element toepassen" -PythonNumpyCeil = "Breng het plafond per element aan" -PythonNumpyCos = "Pas co element voor element toe" -PythonNumpyCosh = "Cosh element voor element toepassen" -PythonNumpyDegrees = "Graden element voor element toepassen" -PythonNumpyExp = "exp per item toepassen" -PythonNumpyExpm1 = "expm1 element voor element toepassen" -PythonNumpyFloor = "Grond per element aanbrengen" -PythonNumpyLog = "Journaal per item toepassen" -PythonNumpyLog10 = "Pas log10 element voor element toe" -PythonNumpyLog2 = "Log2 element voor element toepassen" -PythonNumpyRadians = "Pas radialen toe per element" -PythonNumpySin = "Zonde per element toepassen" -PythonNumpySinh = "Sinh element voor element toepassen" -PythonNumpySqrt = "Sqrt element voor element toepassen" -PythonNumpyTan = "Breng de kleur aan per element" -PythonNumpyTanh = "Tanh toepassen per item" -PythonNumpyBool = "Bool type numpy" -PythonNumpyFloat = "Float type numpy" -PythonNumpyUint8 = "Typ uint8 van numpy" -PythonNumpyInt8 = "Typ int8 van numpy" -PythonNumpyUint16 = "Typ uint16 van numpy" -PythonNumpyInt16 = "Typ int16 van numpy" -PythonNumpyNan = "Nan vertegenwoordiging van numpy" -PythonNumpyInf = "Inf representatie van numpy" -PythonNumpyE = "2.718281828459045" -PythonNumpyPi = "3.141592653589793" -PythonNumpyFft = "Eendimensionale discrete fouriertransformatie" -PythonNumpyIfft = "Eendimensionale inverse discrete fouriertransformatie" -PythonNumpyDet = "Determinant van a" -PythonNumpyEig = "Eigenwaarden en rechter eigenvectoren van a" -PythonNumpyCholesky = "Cholesky-decompositie" -PythonNumpyInv = "Inverse matrix a" -PythonNumpyNorm = "Matrix- of vectorstandaard" PythonOct = "Integer omzetten naar octaal" PythonPhase = "Fase van z in radialen" PythonPlot = "Plot y versus x als lijnen" diff --git a/apps/code/catalog.pt.i18n b/apps/code/catalog.pt.i18n index be87d2285..513297365 100644 --- a/apps/code/catalog.pt.i18n +++ b/apps/code/catalog.pt.i18n @@ -102,100 +102,6 @@ PythonMonotonic = "Devolve o valor do relógio" PythonNumpyFunction = "Prefixo do módulo numpy" PythonNumpyFftFunction = "Prefixo do módulo numpy.fft" PythonNumpyLinalgFunction = "Prefixo do módulo numpy.linalg" -PythonNumpyArray = "Converter uma matriz em ndarray" -PythonNumpyArange = "Faça uma mesa do intervalo (i)" -PythonNumpyConcatenate = "Concatenar a e b" -PythonNumpyDiag = "Extraia ou construa uma matriz diagonal" -PythonNumpyZeros = "Matriz de forma S preenchida com 0" -PythonNumpyOnes = "Matriz em forma de S preenchida com 1" -PythonNumpyEmpty = "Matriz não inicializada de formulários" -PythonNumpyEye = "Tabela com 1s na diagonal e 0s em outros lugares" -PythonNumpyFull = "Matriz de forma S preenchida com v" -PythonNumpyLinspace = "Números espaçados em um intervalo especificado" -PythonNumpyLogspace = "Números espaçados em escala logarítmica" -PythonNumpyCopy = "Cópia da tabela" -PythonNumpyDtype = "Tipo de mesa" -PythonNumpyFlat = "Iterador de matriz plana" -PythonNumpyFlatten = "Versão achatada da mesa" -PythonNumpyShape = "Obtenha a forma da matriz" -PythonNumpyReshape = "Substitua a forma da matriz por s" -PythonNumpySize = "Número de elementos na matriz" -PythonNumpyTranspose = "Versão transposta da tabela" -PythonNumpySortWithArguments = "Versão ordenada da tabela" -PythonNumpyNdinfo = "Imprimir informações sobre um" -PythonNumpyAll = "Teste se todos os elementos de um são trye" -PythonNumpyAny = "Teste se um elemento de a é verdadeiro" -PythonNumpyArgmax = "Índice do valor máximo de um" -PythonNumpyArgmin = "Subscrito do valor mínimo de um" -PythonNumpyArgsort = "Pistas que classificariam um array" -PythonNumpyClip = "Corte os valores em uma matriz" -PythonNumpyConvolve = "Convolução linear discreta de a e b" -PythonNumpyDiff = "Derivado de um" -PythonNumpyInterp = "Valores linearmente interpolados de um" -PythonNumpyDot = "Produto escalar de a e b" -PythonNumpyCross = "Produto cruzado de a e b" -PythonNumpyEqual = "A == um elemento por elemento" -PythonNumpyNot_equal = "A! = Um elemento por elemento" -PythonNumpyFlip = "Mesa giratória" -PythonNumpyIsfinite = "Teste a finitude elemento por elemento" -PythonNumpyIsinf = "Teste o infinito elemento por elemento" -PythonNumpyMean = "D médio" -PythonNumpyMin = "Valor máximo de a" -PythonNumpyMax = "Valor mínimo de a" -PythonNumpyMedian = "Valor mediano de a" -PythonNumpyMinimum = "Elementos mínimos da matriz por elemento" -PythonNumpyMaximum = "Máximo por elemento de elementos da matriz" -PythonNumpyPolyfit = "Ajuste polinomial de mínimos quadrados" -PythonNumpyPolyval = "Avalie um polinômio em valores específicos" -PythonNumpyRoll = "Mudar o conteúdo de a por n" -PythonNumpySort = "Classificar para" -PythonNumpyStd = "Calcule o desvio padrão de um" -PythonNumpySum = "Calcule a soma de um" -PythonNumpyTrace = "Calcule a soma dos elementos diagonais de um" -PythonNumpyTrapz = "Integre usando a régua trapezoidal composta" -PythonNumpyWhere = "Retorna elementos escolhidos de x ou y de acordo com c" -PythonNumpyVectorize = "Vectorize a função python genérica f" -PythonNumpyAcos = "Aplicar acos item por item" -PythonNumpyAcosh = "Aplicar acosh item por item" -PythonNumpyArctan2 = "Aplicar arctan2 elemento por elemento" -PythonNumpyAround = "Aplicar ao redor do elemento" -PythonNumpyAsin = "Aplicar asin elemento a elemento" -PythonNumpyAsinh = "Aplicar asinh elemento por elemento" -PythonNumpyAtan = "Aplicar um item por item" -PythonNumpyAtanh = "Aplicar atanh elemento por elemento" -PythonNumpyCeil = "Aplicar o teto por elemento" -PythonNumpyCos = "Aplicar cos elemento por elemento" -PythonNumpyCosh = "Aplicar cosh elemento por elemento" -PythonNumpyDegrees = "Aplicar graus elemento a elemento" -PythonNumpyExp = "Aplicar exp por item" -PythonNumpyExpm1 = "Aplicar expm1 elemento a elemento" -PythonNumpyFloor = "Aplicar solo por elemento" -PythonNumpyLog = "Aplicar diário por item" -PythonNumpyLog10 = "Aplicar log10 elemento a elemento" -PythonNumpyLog2 = "Aplicar log2 elemento por elemento" -PythonNumpyRadians = "Aplicar radianos por elemento" -PythonNumpySin = "Aplicar pecado por elemento" -PythonNumpySinh = "Aplicar sinh elemento a elemento" -PythonNumpySqrt = "Aplicar sqrt elemento a elemento" -PythonNumpyTan = "Aplicar o bronzeado por elemento" -PythonNumpyTanh = "Aplicar tanh por item" -PythonNumpyBool = "Tipo Bool de entorpecido" -PythonNumpyFloat = "Tipo flutuante de entorpecimento" -PythonNumpyUint8 = "Digite uint8 de numpy" -PythonNumpyInt8 = "Digite int8 de numpy" -PythonNumpyUint16 = "Digite uint16 de numpy" -PythonNumpyInt16 = "Digite int16 de numpy" -PythonNumpyNan = "Representação Nan de numpy" -PythonNumpyInf = "Representação de inf de numpy" -PythonNumpyE = "2.718281828459045" -PythonNumpyPi = "3,141592653589793" -PythonNumpyFft = "Transformada discreta de Fourier unidimensional" -PythonNumpyIfft = "Transformada de Fourier discreta inversa unidimensional" -PythonNumpyDet = "Determinante de um" -PythonNumpyEig = "Valores próprios e vetores próprios direitos de um" -PythonNumpyCholesky = "Decomposição de Cholesky" -PythonNumpyInv = "Matriz inversa a" -PythonNumpyNorm = "Matriz ou padrão vetorial" PythonOct = "Converter número inteiro em octal" PythonPhase = "Argumento de z" PythonPlot = "Desenhar y em função de x" diff --git a/apps/code/python_toolbox.cpp b/apps/code/python_toolbox.cpp index 7d4c5384f..2a26f98a7 100644 --- a/apps/code/python_toolbox.cpp +++ b/apps/code/python_toolbox.cpp @@ -136,116 +136,116 @@ const ToolboxMessageTree MatplotlibPyplotModuleChildren[] = { }; const ToolboxMessageTree NumpyNdarrayModuleChildren[] = { - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyArray, I18n::Message::PythonNumpyArray), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyArange, I18n::Message::PythonNumpyArange), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyConcatenate, I18n::Message::PythonNumpyConcatenate), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyDiag, I18n::Message::PythonNumpyDiag), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyZeros, I18n::Message::PythonNumpyZeros), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyOnes, I18n::Message::PythonNumpyOnes), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyEmpty, I18n::Message::PythonNumpyEmpty), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyEye, I18n::Message::PythonNumpyEye), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFull, I18n::Message::PythonNumpyFull), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyLinspace, I18n::Message::PythonNumpyLinspace), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyLogspace, I18n::Message::PythonNumpyLogspace), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyCopy, I18n::Message::PythonNumpyCopy, false, I18n::Message::PythonCommandNumpyCopyWithoutArg), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyDtype, I18n::Message::PythonNumpyDtype, false, I18n::Message::PythonCommandNumpyDtypeWithoutArg), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFlat, I18n::Message::PythonNumpyFlat, false, I18n::Message::PythonCommandNumpyFlatWithoutArg), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFlatten, I18n::Message::PythonNumpyFlatten, false, I18n::Message::PythonCommandNumpyFlattenWithoutArg), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyShape, I18n::Message::PythonNumpyShape, false, I18n::Message::PythonCommandNumpyShapeWithoutArg), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyReshape, I18n::Message::PythonNumpyReshape, false, I18n::Message::PythonCommandNumpyReshapeWithoutArg), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpySize, I18n::Message::PythonNumpySize, false, I18n::Message::PythonCommandNumpySizeWithoutArg), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyTranspose, I18n::Message::PythonNumpyTranspose, false, I18n::Message::PythonCommandNumpyTransposeWithoutArg), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpySort, I18n::Message::PythonNumpySortWithArguments, false, I18n::Message::PythonCommandNumpySortWithoutArg), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyArray), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyArange), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyConcatenate), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyDiag), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyZeros), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyOnes), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyEmpty), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyEye), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFull), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyLinspace), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyLogspace), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyCopy), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyDtype), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFlat), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFlatten), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyShape), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyReshape), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpySize), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyTranspose), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpySort), }; const ToolboxMessageTree NumpyFunctionsModuleChildren[] = { - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyNdinfo, I18n::Message::PythonNumpyNdinfo), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAll, I18n::Message::PythonNumpyAll), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAny, I18n::Message::PythonNumpyAny), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyArgmax, I18n::Message::PythonNumpyArgmax), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyArgmin, I18n::Message::PythonNumpyArgmin), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyArgsort, I18n::Message::PythonNumpyArgsort), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyClip, I18n::Message::PythonNumpyClip), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyConvolve, I18n::Message::PythonNumpyConvolve), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyDiff, I18n::Message::PythonNumpyDiff), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyInterp, I18n::Message::PythonNumpyInterp), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyDot, I18n::Message::PythonNumpyDot), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyCross, I18n::Message::PythonNumpyCross), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyEqual, I18n::Message::PythonNumpyEqual), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyNot_equal, I18n::Message::PythonNumpyNot_equal), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFlip, I18n::Message::PythonNumpyFlip), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyIsfinite, I18n::Message::PythonNumpyIsfinite), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyIsinf, I18n::Message::PythonNumpyIsinf), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyMean, I18n::Message::PythonNumpyMean), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyMin, I18n::Message::PythonNumpyMin), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyMax, I18n::Message::PythonNumpyMax), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyMedian, I18n::Message::PythonNumpyMedian), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyMinimum, I18n::Message::PythonNumpyMinimum), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyMaximum, I18n::Message::PythonNumpyMaximum), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyPolyfit, I18n::Message::PythonNumpyPolyfit), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyPolyval, I18n::Message::PythonNumpyPolyval), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyRoll, I18n::Message::PythonNumpyRoll), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpySortWithArguments, I18n::Message::PythonNumpySort), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyStd, I18n::Message::PythonNumpyStd), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpySum, I18n::Message::PythonNumpySum), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyTrace, I18n::Message::PythonNumpyTrace), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyTrapz, I18n::Message::PythonNumpyTrapz), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyWhere, I18n::Message::PythonNumpyWhere), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyVectorize, I18n::Message::PythonNumpyVectorize), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAcos, I18n::Message::PythonNumpyAcos), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAcosh, I18n::Message::PythonNumpyAcosh), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyArctan2, I18n::Message::PythonNumpyArctan2), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAround, I18n::Message::PythonNumpyAround), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAsin, I18n::Message::PythonNumpyAsin), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAsinh, I18n::Message::PythonNumpyAsinh), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAtan, I18n::Message::PythonNumpyAtan), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAtanh, I18n::Message::PythonNumpyAtanh), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyCeil, I18n::Message::PythonNumpyCeil), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyCos, I18n::Message::PythonNumpyCos), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyCosh, I18n::Message::PythonNumpyCosh), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyDegrees, I18n::Message::PythonNumpyDegrees), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyExp, I18n::Message::PythonNumpyExp), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyExpm1, I18n::Message::PythonNumpyExpm1), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFloor, I18n::Message::PythonNumpyFloor), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyLog, I18n::Message::PythonNumpyLog), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyLog10, I18n::Message::PythonNumpyLog10), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyLog2, I18n::Message::PythonNumpyLog2), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyRadians, I18n::Message::PythonNumpyRadians), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpySin, I18n::Message::PythonNumpySin), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpySinh, I18n::Message::PythonNumpySinh), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpySqrt, I18n::Message::PythonNumpySqrt), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyTan, I18n::Message::PythonNumpyTan), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyTanh, I18n::Message::PythonNumpyTanh), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyBool, I18n::Message::PythonNumpyBool), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFloat, I18n::Message::PythonNumpyFloat), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyUint8, I18n::Message::PythonNumpyUint8), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyInt8, I18n::Message::PythonNumpyInt8), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyUint16, I18n::Message::PythonNumpyUint16), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyInt16, I18n::Message::PythonNumpyInt16), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyNan, I18n::Message::PythonNumpyNan), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyInf, I18n::Message::PythonNumpyInf), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyE, I18n::Message::PythonNumpyE), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyPi, I18n::Message::PythonNumpyPi) + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyNdinfo), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAll), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAny), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyArgmax), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyArgmin), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyArgsort), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyClip), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyConvolve), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyDiff), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyInterp), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyDot), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyCross), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyEqual), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyNot_equal), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFlip), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyIsfinite), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyIsinf), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyMean), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyMin), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyMax), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyMedian), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyMinimum), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyMaximum), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyPolyfit), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyPolyval), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyRoll), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpySortWithArguments), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyStd), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpySum), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyTrace), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyTrapz), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyWhere), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyVectorize), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAcos), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAcosh), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyArctan2), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAround), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAsin), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAsinh), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAtan), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyAtanh), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyCeil), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyCos), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyCosh), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyDegrees), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyExp), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyExpm1), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFloor), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyLog), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyLog10), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyLog2), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyRadians), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpySin), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpySinh), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpySqrt), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyTan), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyTanh), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyBool), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFloat), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyUint8), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyInt8), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyUint16), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyInt16), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyNan), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyInf), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyE), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyPi) }; const ToolboxMessageTree NumpyFftModuleChildren[] = { - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFftFunction, I18n::Message::PythonTurtleFunction, false, I18n::Message::PythonCommandNumpyFftFunctionWithoutArg), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFft, I18n::Message::PythonNumpyFft), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyIfft, I18n::Message::PythonNumpyIfft) + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFftFunction, I18n::Message::PythonNumpyFftFunction, false, I18n::Message::PythonCommandNumpyFftFunctionWithoutArg), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFft), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyIfft) }; const ToolboxMessageTree NumpyLinalgModuleChildren[] = { - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyLinalgFunction, I18n::Message::PythonTurtleFunction, false, I18n::Message::PythonCommandNumpyLinalgFunctionWithoutArg), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyDet, I18n::Message::PythonNumpyDet), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyEig, I18n::Message::PythonNumpyEig), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyCholesky, I18n::Message::PythonNumpyCholesky), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyInv, I18n::Message::PythonNumpyInv), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyNorm, I18n::Message::PythonNumpyNorm) + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyLinalgFunction, I18n::Message::PythonNumpyLinalgFunction, false, I18n::Message::PythonCommandNumpyLinalgFunctionWithoutArg), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyDet), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyEig), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyCholesky), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyInv), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyNorm) }; const ToolboxMessageTree NumpyModuleChildren[] = { - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandImportFromNumpy, I18n::Message::PythonImportTurtle, false), - ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFunction, I18n::Message::PythonTurtleFunction, false, I18n::Message::PythonCommandNumpyPythonCommandNumpyFunctionWithoutArgFunction), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandImportFromNumpy, I18n::Message::PythonImportNumpy, false), + ToolboxMessageTree::Leaf(I18n::Message::PythonCommandNumpyFunction, I18n::Message::PythonNumpyFunction, false, I18n::Message::PythonCommandNumpyFunctionWithoutArg), ToolboxMessageTree::Node(I18n::Message::NumpyNdarray, NumpyNdarrayModuleChildren), ToolboxMessageTree::Node(I18n::Message::Functions, NumpyFunctionsModuleChildren), ToolboxMessageTree::Node(I18n::Message::NumpyFftModule, NumpyFftModuleChildren), @@ -253,7 +253,8 @@ const ToolboxMessageTree NumpyModuleChildren[] = { }; const ToolboxMessageTree UlabModuleChildren[] = { - ToolboxMessageTree::Node(I18n::Message::NumpyModule, NumpyModuleChildren) + ToolboxMessageTree::Node(I18n::Message::NumpyModule, NumpyModuleChildren), + ToolboxMessageTree::Leaf(I18n::Message::UlabDocumentation, I18n::Message::UlabDocumentationLink) }; const ToolboxMessageTree TurtleModuleChildren[] = { @@ -622,8 +623,11 @@ KDCoordinate PythonToolbox::rowHeight(int j) { } bool PythonToolbox::selectLeaf(int selectedRow) { - m_selectableTableView.deselectTable(); ToolboxMessageTree * node = (ToolboxMessageTree *)m_messageTreeModel->childAtIndex(selectedRow); + if(node->text() == I18n::Message::UlabDocumentationLink){ + return true; + } + m_selectableTableView.deselectTable(); if(node->insertedText() == I18n::Message::IonSelector){ m_ionKeys.setSender(sender()); Container::activeApp()->displayModalViewController(static_cast(&m_ionKeys), 0.f, 0.f, Metric::PopUpTopMargin, Metric::PopUpLeftMargin, 0, Metric::PopUpRightMargin); diff --git a/apps/code/toolbox.de.i18n b/apps/code/toolbox.de.i18n index 34840329b..82dd2b142 100644 --- a/apps/code/toolbox.de.i18n +++ b/apps/code/toolbox.de.i18n @@ -4,3 +4,4 @@ Modules = "Module" LoopsAndTests = "Schleifen und Tests" Files = "Dateien" Exceptions = "Ausnahmen" +UlabDocumentation = "Dokumentation" diff --git a/apps/code/toolbox.en.i18n b/apps/code/toolbox.en.i18n index 81e60c7da..59eadf403 100644 --- a/apps/code/toolbox.en.i18n +++ b/apps/code/toolbox.en.i18n @@ -4,3 +4,4 @@ Modules = "Modules" LoopsAndTests = "Loops and tests" Files = "Files" Exceptions = "Exceptions" +UlabDocumentation = "Documentation" diff --git a/apps/code/toolbox.es.i18n b/apps/code/toolbox.es.i18n index 81e60c7da..905e28a8e 100644 --- a/apps/code/toolbox.es.i18n +++ b/apps/code/toolbox.es.i18n @@ -4,3 +4,4 @@ Modules = "Modules" LoopsAndTests = "Loops and tests" Files = "Files" Exceptions = "Exceptions" +UlabDocumentation = "Documentación" diff --git a/apps/code/toolbox.fr.i18n b/apps/code/toolbox.fr.i18n index 724abb7a5..077e4550a 100644 --- a/apps/code/toolbox.fr.i18n +++ b/apps/code/toolbox.fr.i18n @@ -4,3 +4,4 @@ Modules = "Modules" LoopsAndTests = "Boucles et tests" Files = "Fichiers" Exceptions = "Exceptions" +UlabDocumentation = "Documentation" diff --git a/apps/code/toolbox.hu.i18n b/apps/code/toolbox.hu.i18n index 890151220..fbdff6f74 100644 --- a/apps/code/toolbox.hu.i18n +++ b/apps/code/toolbox.hu.i18n @@ -4,3 +4,4 @@ Modules = "Modulok" LoopsAndTests = "Hurkok és tesztek" Files = "Fájlok" Exceptions = "Kivételek" +UlabDocumentation = "Dokumentáció" diff --git a/apps/code/toolbox.it.i18n b/apps/code/toolbox.it.i18n index d7b219d87..7069ccb4e 100644 --- a/apps/code/toolbox.it.i18n +++ b/apps/code/toolbox.it.i18n @@ -4,3 +4,4 @@ Modules = "Moduli" LoopsAndTests = "Cicli e test" Files = "Files" Exceptions = "Exceptions" +UlabDocumentation = "Documentazione" diff --git a/apps/code/toolbox.nl.i18n b/apps/code/toolbox.nl.i18n index 849bd76a6..4df9ed1a7 100644 --- a/apps/code/toolbox.nl.i18n +++ b/apps/code/toolbox.nl.i18n @@ -4,3 +4,4 @@ Modules = "Modules" LoopsAndTests = "Herhalingen en testen" Files = "Files" Exceptions = "Exceptions" +UlabDocumentation = "Documentatie" diff --git a/apps/code/toolbox.pt.i18n b/apps/code/toolbox.pt.i18n index f7cfad07b..4ea2d75fd 100644 --- a/apps/code/toolbox.pt.i18n +++ b/apps/code/toolbox.pt.i18n @@ -4,3 +4,4 @@ Modules = "Módulos" LoopsAndTests = "Laços e testes" Files = "Files" Exceptions = "Exceptions" +UlabDocumentation = "Documentação" diff --git a/apps/code/toolbox.universal.i18n b/apps/code/toolbox.universal.i18n index df6a9171d..5a307394c 100644 --- a/apps/code/toolbox.universal.i18n +++ b/apps/code/toolbox.universal.i18n @@ -64,3 +64,4 @@ PythonCommandReturn = "return " RandomModule = "random" IonSelector = "Key selector" PressAKey = "Press a key" +UlabDocumentationLink = "micropython-ulab.readthedocs.io"