Rename UCodePointUnknownX to UCodePointUnknown

This commit is contained in:
Ruben Dashyan
2019-09-26 10:29:00 +02:00
committed by Léa Saviot
parent b728fb8a1b
commit c3cf5c1ef4
9 changed files with 32 additions and 32 deletions

View File

@@ -165,9 +165,9 @@ void ContinuousFunction::setPlotType(PlotType newPlotType, Poincare::Preferences
Expression e = expressionClone();
// Change y(t) to [t y(t)]
Matrix newExpr = Matrix::Builder();
newExpr.addChildAtIndexInPlace(Symbol::Builder(UCodePointUnknownX), 0, 0);
newExpr.addChildAtIndexInPlace(Symbol::Builder(UCodePointUnknown), 0, 0);
// if y(t) was not uninitialized, insert [t 2t] to set an example
e = e.isUninitialized() ? Multiplication::Builder(Rational::Builder(2), Symbol::Builder(UCodePointUnknownX)) : e;
e = e.isUninitialized() ? Multiplication::Builder(Rational::Builder(2), Symbol::Builder(UCodePointUnknown)) : e;
newExpr.addChildAtIndexInPlace(e, newExpr.numberOfChildren(), newExpr.numberOfChildren());
newExpr.setDimensions(2, 1);
setExpressionContent(newExpr);
@@ -237,7 +237,7 @@ double ContinuousFunction::approximateDerivative(double x, Poincare::Context * c
if (x < tMin() || x > tMax()) {
return NAN;
}
Poincare::Derivative derivative = Poincare::Derivative::Builder(expressionReduced(context).clone(), Symbol::Builder(UCodePointUnknownX), Poincare::Float<double>::Builder(x)); // derivative takes ownership of Poincare::Float<double>::Builder(x) and the clone of expression
Poincare::Derivative derivative = Poincare::Derivative::Builder(expressionReduced(context).clone(), Symbol::Builder(UCodePointUnknown), Poincare::Float<double>::Builder(x)); // derivative takes ownership of Poincare::Float<double>::Builder(x) and the clone of expression
/* TODO: when we approximate derivative, we might want to simplify the
* derivative here. However, we might want to do it once for all x (to avoid
* lagging in the derivative table. */
@@ -281,7 +281,7 @@ Coordinate2D<T> ContinuousFunction::templatedApproximateAtParameter(T t, Poincar
}
constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1;
char unknown[bufferSize];
Poincare::SerializationHelper::CodePoint(unknown, bufferSize, UCodePointUnknownX);
Poincare::SerializationHelper::CodePoint(unknown, bufferSize, UCodePointUnknown);
PlotType type = plotType();
Expression e = expressionReduced(context);
if (type != PlotType::Parametric) {
@@ -312,7 +312,7 @@ Coordinate2D<double> ContinuousFunction::nextIntersectionFrom(double start, doub
assert(plotType() == PlotType::Cartesian);
constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1;
char unknownX[bufferSize];
SerializationHelper::CodePoint(unknownX, bufferSize, UCodePointUnknownX);
SerializationHelper::CodePoint(unknownX, bufferSize, UCodePointUnknown);
double domainMin = maxDouble(tMin(), eDomainMin);
double domainMax = minDouble(tMax(), eDomainMax);
if (step > 0.0f) {
@@ -329,7 +329,7 @@ Coordinate2D<double> ContinuousFunction::nextPointOfInterestFrom(double start, d
assert(plotType() == PlotType::Cartesian);
constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1;
char unknownX[bufferSize];
SerializationHelper::CodePoint(unknownX, bufferSize, UCodePointUnknownX);
SerializationHelper::CodePoint(unknownX, bufferSize, UCodePointUnknown);
if (step > 0.0f) {
start = maxDouble(start, tMin());
max = minDouble(max, tMax());
@@ -344,7 +344,7 @@ Poincare::Expression ContinuousFunction::sumBetweenBounds(double start, double e
assert(plotType() == PlotType::Cartesian);
start = maxDouble(start, tMin());
end = minDouble(end, tMax());
return Poincare::Integral::Builder(expressionReduced(context).clone(), Poincare::Symbol::Builder(UCodePointUnknownX), Poincare::Float<double>::Builder(start), Poincare::Float<double>::Builder(end)); // Integral takes ownership of args
return Poincare::Integral::Builder(expressionReduced(context).clone(), Poincare::Symbol::Builder(UCodePointUnknown), Poincare::Float<double>::Builder(start), Poincare::Float<double>::Builder(end)); // Integral takes ownership of args
/* TODO: when we approximate integral, we might want to simplify the integral
* here. However, we might want to do it once for all x (to avoid lagging in
* the derivative table. */