From d0fb30028e86ca216d0464b0ed2017eb995a2f6f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?=C3=89milie=20Feral?= Date: Mon, 29 Jul 2019 16:40:00 +0200 Subject: [PATCH] =?UTF-8?q?[poincare]=20Use=20'=C3=97'=20instead=20of=20'?= =?UTF-8?q?=C2=B7'=20when=20pressing=20multiplication=20key?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- apps/solver/test/equation_store.cpp | 14 +++++++------- poincare/src/layout_cursor.cpp | 4 ++-- 2 files changed, 9 insertions(+), 9 deletions(-) diff --git a/apps/solver/test/equation_store.cpp b/apps/solver/test/equation_store.cpp index 3bb95fb10..81fce031b 100644 --- a/apps/solver/test/equation_store.cpp +++ b/apps/solver/test/equation_store.cpp @@ -110,7 +110,7 @@ QUIZ_CASE(equation_solve) { // 3x^2-4x+4=2 const char * equations8[] = {"3×x^2-4x+4=2", 0}; - const char * solutions8[] = {"(2)/(3)-(√(2))/(3)·𝐢","(2)/(3)+(√(2))/(3)·𝐢", "-8"}; + const char * solutions8[] = {"(2)/(3)-(√(2))/(3)×𝐢","(2)/(3)+(√(2))/(3)×𝐢", "-8"}; assert_equation_system_exact_solve_to(equations8, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions8, 3); // 2×x^2-4×x+4=3 @@ -130,7 +130,7 @@ QUIZ_CASE(equation_solve) { // x^2+x+1=3×x^2+pi×x-√(5) const char * equations11[] = {"x^2+x+1=3×x^2+π×x-√(5)", 0}; - const char * solutions11[] = {"(√(π^\0222\023-2·π+8·√(5)+9)-π+1)/(4)", "(-√(π^\0222\023-2·π+8·√(5)+9)-π+1)/(4)", "π^\0222\023-2·π+8·√(5)+9"}; + const char * solutions11[] = {"(√(π^\0222\023-2×π+8×√(5)+9)-π+1)/(4)", "(-√(π^\0222\023-2×π+8×√(5)+9)-π+1)/(4)", "π^\0222\023-2×π+8×√(5)+9"}; assert_equation_system_exact_solve_to(equations11, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions11, 3); // TODO @@ -218,11 +218,11 @@ QUIZ_CASE(equation_solve_complex_format) { assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1); // x^2+x+1=0 - const char * solutions2[] = {"-(1)/(2)-(√(3))/(2)·𝐢","-(1)/(2)+(√(3))/(2)·𝐢", "-3"}; + const char * solutions2[] = {"-(1)/(2)-(√(3))/(2)×𝐢","-(1)/(2)+(√(3))/(2)×𝐢", "-3"}; assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions2, 3); // x^2-√(-1)=0 - const char * solutions3[] = {"-(√(2))/(2)-(√(2))/(2)·𝐢", "(√(2))/(2)+(√(2))/(2)·𝐢","4·𝐢"}; + const char * solutions3[] = {"-(√(2))/(2)-(√(2))/(2)×𝐢", "(√(2))/(2)+(√(2))/(2)×𝐢","4×𝐢"}; assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions3, 3); // x+√(-1)×√(-1) = 0 @@ -231,18 +231,18 @@ QUIZ_CASE(equation_solve_complex_format) { Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Polar); // x+𝐢 = 0 --> x = e^(-π/2×i) - const char * solutions0Polar[] = {"ℯ^\x12-(π)/(2)·𝐢\x13"}; + const char * solutions0Polar[] = {"ℯ^\x12-(π)/(2)×𝐢\x13"}; assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0Polar, 1); // x+√(-1) = 0 --> x = e^(-π/2×𝐢) assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0Polar, 1); // x^2+x+1=0 - const char * solutions2Polar[] = {"ℯ^\x12-(2·π)/(3)·𝐢\x13","ℯ^\x12(2·π)/(3)·𝐢\x13", "3·ℯ^\x12π·𝐢\x13"}; + const char * solutions2Polar[] = {"ℯ^\x12-(2×π)/(3)×𝐢\x13","ℯ^\x12(2×π)/(3)×𝐢\x13", "3×ℯ^\x12π×𝐢\x13"}; assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions2Polar, 3); // x^2-√(-1)=0 - const char * solutions3Polar[] = {"ℯ^\x12-(3·π)/(4)·𝐢\x13", "ℯ^\x12(π)/(4)·𝐢\x13", "4·ℯ^\x12(π)/(2)·𝐢\x13"}; + const char * solutions3Polar[] = {"ℯ^\x12-(3×π)/(4)×𝐢\x13", "ℯ^\x12(π)/(4)×𝐢\x13", "4×ℯ^\x12(π)/(2)×𝐢\x13"}; assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions3Polar, 3); } diff --git a/poincare/src/layout_cursor.cpp b/poincare/src/layout_cursor.cpp index 686405c13..f9d9320a2 100644 --- a/poincare/src/layout_cursor.cpp +++ b/poincare/src/layout_cursor.cpp @@ -116,7 +116,7 @@ void LayoutCursor::addEmptySquarePowerLayout() { void LayoutCursor::addEmptyTenPowerLayout() { EmptyLayout emptyLayout = EmptyLayout::Builder(); HorizontalLayout sibling = HorizontalLayout::Builder( - CodePointLayout::Builder(UCodePointMiddleDot), + CodePointLayout::Builder(UCodePointMultiplicationSign), CodePointLayout::Builder('1'), CodePointLayout::Builder('0'), VerticalOffsetLayout::Builder( @@ -154,7 +154,7 @@ void LayoutCursor::insertText(const char * text) { continue; } if (codePoint == UCodePointMultiplicationSign) { - newChild = CodePointLayout::Builder(UCodePointMiddleDot); + newChild = CodePointLayout::Builder(UCodePointMultiplicationSign); } else if (codePoint == '(') { newChild = LeftParenthesisLayout::Builder(); if (pointedChild.isUninitialized()) {