mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 16:57:31 +01:00
[apps/code] Remove base python script and add mathsup.py (#50)
This commit is contained in:
@@ -3,105 +3,12 @@
|
||||
namespace Code {
|
||||
|
||||
constexpr ScriptTemplate emptyScriptTemplate(".py", "\x01" R"(from math import *
|
||||
from mathsup import *
|
||||
)");
|
||||
|
||||
constexpr ScriptTemplate squaresScriptTemplate("squares.py", "\x01" R"(from math import *
|
||||
from turtle import *
|
||||
def squares(angle=0.5):
|
||||
reset()
|
||||
L=330
|
||||
speed(10)
|
||||
penup()
|
||||
goto(-L/2,-L/2)
|
||||
pendown()
|
||||
for i in range(660):
|
||||
forward(L)
|
||||
left(90+angle)
|
||||
L=L-L*sin(angle*pi/180)
|
||||
hideturtle())");
|
||||
|
||||
constexpr ScriptTemplate mandelbrotScriptTemplate("mandelbrot.py", "\x01" R"(# This script draws a Mandelbrot fractal set
|
||||
# N_iteration: degree of precision
|
||||
import kandinsky
|
||||
def mandelbrot(N_iteration):
|
||||
for x in range(320):
|
||||
for y in range(222):
|
||||
# Compute the mandelbrot sequence for the point c = (c_r, c_i) with start value z = (z_r, z_i)
|
||||
z = complex(0,0)
|
||||
# Rescale to fit the drawing screen 320x222
|
||||
c = complex(3.5*x/319-2.5, -2.5*y/221+1.25)
|
||||
i = 0
|
||||
while (i < N_iteration) and abs(z) < 2:
|
||||
i = i + 1
|
||||
z = z*z+c
|
||||
# Choose the color of the dot from the Mandelbrot sequence
|
||||
rgb = int(255*i/N_iteration)
|
||||
col = kandinsky.color(int(rgb*0.82),int(rgb*0.13),int(rgb*0.18))
|
||||
# Draw a pixel colored in 'col' at position (x,y)
|
||||
kandinsky.set_pixel(x,y,col))");
|
||||
|
||||
constexpr ScriptTemplate polynomialScriptTemplate("polynomial.py", "\x01" R"(from math import *
|
||||
# roots(a,b,c) computes the solutions of the equation a*x**2+b*x+c=0
|
||||
def roots(a,b,c):
|
||||
delta = b*b-4*a*c
|
||||
if delta == 0:
|
||||
return -b/(2*a)
|
||||
elif delta > 0:
|
||||
x_1 = (-b-sqrt(delta))/(2*a)
|
||||
x_2 = (-b+sqrt(delta))/(2*a)
|
||||
return x_1, x_2
|
||||
else:
|
||||
return None)");
|
||||
|
||||
constexpr ScriptTemplate parabolaScriptTemplate("parabola.py", "\x01" R"(from matplotlib.pyplot import *
|
||||
from math import *
|
||||
|
||||
g=9.81
|
||||
|
||||
def x(t,v_0,alpha):
|
||||
return v_0*cos(alpha)*t
|
||||
def y(t,v_0,alpha,h_0):
|
||||
return -0.5*g*t**2+v_0*sin(alpha)*t+h_0
|
||||
|
||||
def vx(v_0,alpha):
|
||||
return v_0*cos(alpha)
|
||||
def vy(t,v_0,alpha):
|
||||
return -g*t+v_0*sin(alpha)
|
||||
|
||||
def t_max(v_0,alpha,h_0):
|
||||
return (v_0*sin(alpha)+sqrt((v_0**2)*(sin(alpha)**2)+2*g*h_0))/g
|
||||
|
||||
def simulation(v_0=15,alpha=pi/4,h_0=2):
|
||||
tMax=t_max(v_0,alpha,h_0)
|
||||
accuracy=1/10**(floor(log10(tMax))-1)
|
||||
T_MAX=floor(tMax*accuracy)+1
|
||||
X=[x(t/accuracy,v_0,alpha) for t in range(T_MAX)]
|
||||
Y=[y(t/accuracy,v_0,alpha,h_0) for t in range(T_MAX)]
|
||||
VX=[vx(v_0,alpha) for t in range(T_MAX)]
|
||||
VY=[vy(t/accuracy,v_0,alpha) for t in range(T_MAX)]
|
||||
for i in range(T_MAX):
|
||||
arrow(X[i],Y[i],VX[i]/accuracy,VY[i]/accuracy)
|
||||
grid()
|
||||
show())");
|
||||
|
||||
const ScriptTemplate * ScriptTemplate::Empty() {
|
||||
return &emptyScriptTemplate;
|
||||
}
|
||||
|
||||
const ScriptTemplate * ScriptTemplate::Squares() {
|
||||
return &squaresScriptTemplate;
|
||||
}
|
||||
|
||||
const ScriptTemplate * ScriptTemplate::Mandelbrot() {
|
||||
return &mandelbrotScriptTemplate;
|
||||
}
|
||||
|
||||
const ScriptTemplate * ScriptTemplate::Polynomial() {
|
||||
return &polynomialScriptTemplate;
|
||||
}
|
||||
|
||||
const ScriptTemplate * ScriptTemplate::Parabola() {
|
||||
return ¶bolaScriptTemplate;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user