#include #include #include #include #include #include "../calculation_store.h" typedef ::Calculation::Calculation::DisplayOutput DisplayOutput; typedef ::Calculation::Calculation::EqualSign EqualSign ; typedef ::Calculation::Calculation::NumberOfSignificantDigits NumberOfSignificantDigits; using namespace Poincare; using namespace Calculation; static constexpr int calculationBufferSize = 10 * (sizeof(::Calculation::Calculation) + ::Calculation::Calculation::k_numberOfExpressions * ::Constant::MaxSerializedExpressionSize + sizeof(::Calculation::Calculation *)); char calculationBuffer[calculationBufferSize]; void assert_store_is(CalculationStore * store, const char * * result) { for (int i = 0; i < store->numberOfCalculations(); i++) { quiz_assert(strcmp(store->calculationAtIndex(i)->inputText(), result[i]) == 0); } } KDCoordinate dummyHeight(::Calculation::Calculation * c, bool expanded) { return 0; } QUIZ_CASE(calculation_store) { Shared::GlobalContext globalContext; CalculationStore store(calculationBuffer,calculationBufferSize); // Store is now {9, 8, 7, 6, 5, 4, 3, 2, 1, 0} const char * result[] = {"9", "8", "7", "6", "5", "4", "3", "2", "1", "0"}; for (int i = 0; i < 10; i++) { char text[2] = {(char)(i+'0'), 0}; store.push(text, &globalContext, dummyHeight); quiz_assert(store.numberOfCalculations() == i+1); } assert_store_is(&store, result); for (int i = 9; i > 0; i = i-2) { store.deleteCalculationAtIndex(i); } // Store is now {9, 7, 5, 3, 1} const char * result2[] = {"9", "7", "5", "3", "1"}; assert_store_is(&store, result2); store.deleteAll(); // Checking if the store handles correctly the delete of the oldest calculation when full static int minSize = ::Calculation::Calculation::MinimalSize(); char text[2] = {'0', 0}; while (store.remainingBufferSize() > minSize) { store.push(text, &globalContext, dummyHeight); } int numberOfCalculations1 = store.numberOfCalculations(); /* The buffer is now to full to push a new calculation. * Trying to push a new one should delete the oldest one*/ store.push(text, &globalContext, dummyHeight); int numberOfCalculations2 = store.numberOfCalculations(); // The numberOfCalculations should be the same quiz_assert(numberOfCalculations1 == numberOfCalculations2); store.deleteAll(); quiz_assert(store.remainingBufferSize() == store.bufferSize()); } QUIZ_CASE(calculation_ans) { Shared::GlobalContext globalContext; CalculationStore store(calculationBuffer,calculationBufferSize); store.push("1+3/4", &globalContext, dummyHeight); store.push("ans+2/3", &globalContext, dummyHeight); Shared::ExpiringPointer<::Calculation::Calculation> lastCalculation = store.calculationAtIndex(0); quiz_assert(lastCalculation->displayOutput(&globalContext) == DisplayOutput::ExactAndApproximate); quiz_assert(strcmp(lastCalculation->exactOutputText(),"29/12") == 0); store.push("ans+0.22", &globalContext, dummyHeight); lastCalculation = store.calculationAtIndex(0); quiz_assert(lastCalculation->displayOutput(&globalContext) == DisplayOutput::ExactAndApproximateToggle); quiz_assert(strcmp(lastCalculation->approximateOutputText(NumberOfSignificantDigits::Maximal),"2.6366666666667") == 0); store.deleteAll(); } void assertCalculationIs(const char * input, DisplayOutput display, EqualSign sign, const char * exactOutput, const char * displayedApproximateOutput, const char * storedApproximateOutput, Context * context, CalculationStore * store) { store->push(input, context, dummyHeight); Shared::ExpiringPointer<::Calculation::Calculation> lastCalculation = store->calculationAtIndex(0); quiz_assert(lastCalculation->displayOutput(context) == display); if (sign != EqualSign::Unknown) { quiz_assert(lastCalculation->exactAndApproximateDisplayedOutputsAreEqual(context) == sign); } if (exactOutput) { quiz_assert_print_if_failure(strcmp(lastCalculation->exactOutputText(), exactOutput) == 0, input); } if (displayedApproximateOutput) { quiz_assert_print_if_failure(strcmp(lastCalculation->approximateOutputText(NumberOfSignificantDigits::UserDefined), displayedApproximateOutput) == 0, input); } if (storedApproximateOutput) { quiz_assert_print_if_failure(strcmp(lastCalculation->approximateOutputText(NumberOfSignificantDigits::Maximal), storedApproximateOutput) == 0, input); } store->deleteAll(); } QUIZ_CASE(calculation_significant_digits) { Shared::GlobalContext globalContext; CalculationStore store(calculationBuffer,calculationBufferSize); assertCalculationIs("123456789", DisplayOutput::ExactAndApproximate, EqualSign::Approximation, "123456789", "1.234568ᴇ8", "123456789", &globalContext, &store); assertCalculationIs("1234567", DisplayOutput::ApproximateOnly, EqualSign::Equal, "1234567", "1234567", "1234567", &globalContext, &store); } QUIZ_CASE(calculation_display_exact_approximate) { Shared::GlobalContext globalContext; CalculationStore store(calculationBuffer,calculationBufferSize); assertCalculationIs("1/2", DisplayOutput::ExactAndApproximate, EqualSign::Equal, nullptr, nullptr, nullptr, &globalContext, &store); assertCalculationIs("1/3", DisplayOutput::ExactAndApproximate, EqualSign::Approximation, nullptr, nullptr, nullptr, &globalContext, &store); assertCalculationIs("1/0", DisplayOutput::ExactOnly, EqualSign::Unknown, "undef", "undef", "undef", &globalContext, &store); assertCalculationIs("2x-x", DisplayOutput::ExactOnly, EqualSign::Unknown, "x", "undef", "undef", &globalContext, &store); assertCalculationIs("[[1,2,3]]", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, nullptr, nullptr, &globalContext, &store); assertCalculationIs("[[1,x,3]]", DisplayOutput::ExactAndApproximate, EqualSign::Unknown, nullptr, "[[1,undef,3]]", "[[1,undef,3]]", &globalContext, &store); assertCalculationIs("28^7", DisplayOutput::ExactAndApproximate, EqualSign::Unknown, nullptr, nullptr, nullptr, &globalContext, &store); assertCalculationIs("3+√(2)→a", DisplayOutput::ExactAndApproximate, EqualSign::Approximation, "√(2)+3", nullptr, nullptr, &globalContext, &store); Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy(); assertCalculationIs("3+2→a", DisplayOutput::ApproximateOnly, EqualSign::Equal, "5", "5", "5", &globalContext, &store); Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy(); assertCalculationIs("3→a", DisplayOutput::ApproximateOnly, EqualSign::Equal, "3", "3", "3", &globalContext, &store); Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy(); assertCalculationIs("3+x→f(x)", DisplayOutput::ExactOnly, EqualSign::Unknown, "x+3", nullptr, nullptr, &globalContext, &store); Ion::Storage::sharedStorage()->recordNamed("f.func").destroy(); assertCalculationIs("1+1+random()", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, nullptr, nullptr, &globalContext, &store); assertCalculationIs("1+1+round(1.343,2)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "3.34", "3.34", &globalContext, &store); assertCalculationIs("randint(2,2)+3", DisplayOutput::ApproximateOnly, EqualSign::Unknown, "5", "5", "5", &globalContext, &store); assertCalculationIs("confidence(0.5,2)+3", DisplayOutput::ExactOnly, EqualSign::Unknown, nullptr, nullptr, nullptr, &globalContext, &store); assertCalculationIs("prediction(0.5,2)+3", DisplayOutput::ExactOnly, EqualSign::Unknown, nullptr, nullptr, nullptr, &globalContext, &store); assertCalculationIs("prediction95(0.5,2)+3", DisplayOutput::ExactOnly, EqualSign::Unknown, nullptr, nullptr, nullptr, &globalContext, &store); } QUIZ_CASE(calculation_symbolic_computation) { Shared::GlobalContext globalContext; CalculationStore store(calculationBuffer,calculationBufferSize); assertCalculationIs("x+x+1+3+√(π)", DisplayOutput::ExactOnly, EqualSign::Unknown, "2×x+√(π)+4", "undef", "undef", &globalContext, &store); assertCalculationIs("f(x)", DisplayOutput::ExactOnly, EqualSign::Unknown, "f×x", "undef", "undef", &globalContext, &store); assertCalculationIs("1+x→f(x)", DisplayOutput::ExactOnly, EqualSign::Unknown, "x+1", nullptr, nullptr, &globalContext, &store); assertCalculationIs("f(x)", DisplayOutput::ExactOnly, EqualSign::Unknown, "x+1", "undef", "undef", &globalContext, &store); assertCalculationIs("f(2)", DisplayOutput::ApproximateOnly, EqualSign::Equal, "3", "3", "3", &globalContext, &store); assertCalculationIs("2→x", DisplayOutput::ApproximateOnly, EqualSign::Equal, "2", nullptr, nullptr, &globalContext, &store); assertCalculationIs("f(x)", DisplayOutput::ApproximateOnly, EqualSign::Equal, "3", nullptr, nullptr, &globalContext, &store); assertCalculationIs("x+x+1+3+√(π)", DisplayOutput::ExactAndApproximate, EqualSign::Approximation, "√(π)+8", nullptr, nullptr, &globalContext, &store); Ion::Storage::sharedStorage()->recordNamed("f.func").destroy(); Ion::Storage::sharedStorage()->recordNamed("x.exp").destroy(); } QUIZ_CASE(calculation_symbolic_computation_and_parametered_expressions) { Shared::GlobalContext globalContext; CalculationStore store(calculationBuffer,calculationBufferSize); assertCalculationIs("int((ℯ^(-x))-x^(0.5), x, 0, 3)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, nullptr, nullptr, &globalContext, &store); // Tests a bug with symbolic computation assertCalculationIs("int(x,x,0,2)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "2", "2", &globalContext, &store); assertCalculationIs("sum(x,x,0,2)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "3", "3", &globalContext, &store); assertCalculationIs("product(x,x,1,2)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "2", "2", &globalContext, &store); assertCalculationIs("diff(x^2,x,3)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "6", "6", &globalContext, &store); assertCalculationIs("2→x", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, nullptr, nullptr, &globalContext, &store); assertCalculationIs("int(x,x,0,2)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "2", "2", &globalContext, &store); assertCalculationIs("sum(x,x,0,2)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "3", "3", &globalContext, &store); assertCalculationIs("product(x,x,1,2)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "2", "2", &globalContext, &store); assertCalculationIs("diff(x^2,x,3)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "6", "6", &globalContext, &store); Ion::Storage::sharedStorage()->recordNamed("x.exp").destroy(); } QUIZ_CASE(calculation_complex_format) { Shared::GlobalContext globalContext; CalculationStore store(calculationBuffer,calculationBufferSize); Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Real); assertCalculationIs("1+𝐢", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "1+𝐢", "1+𝐢", &globalContext, &store); assertCalculationIs("√(-1)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, "unreal", nullptr, nullptr, &globalContext, &store); assertCalculationIs("ln(-2)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "unreal", "unreal", &globalContext, &store); assertCalculationIs("√(-1)×√(-1)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "unreal", "unreal", &globalContext, &store); assertCalculationIs("(-8)^(1/3)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "-2", "-2", &globalContext, &store); assertCalculationIs("(-8)^(2/3)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "4", "4", &globalContext, &store); assertCalculationIs("(-2)^(1/4)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "unreal", "unreal", &globalContext, &store); Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Cartesian); assertCalculationIs("1+𝐢", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "1+𝐢", "1+𝐢", &globalContext, &store); assertCalculationIs("√(-1)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "𝐢", "𝐢", &globalContext, &store); assertCalculationIs("ln(-2)", DisplayOutput::ExactAndApproximate, EqualSign::Approximation, "ln(-2)", nullptr, nullptr, &globalContext, &store); assertCalculationIs("√(-1)×√(-1)", DisplayOutput::ApproximateOnly, EqualSign::Unknown, nullptr, "-1", "-1", &globalContext, &store); assertCalculationIs("(-8)^(1/3)", DisplayOutput::ExactAndApproximate, EqualSign::Approximation, "1+√(3)×𝐢", nullptr, nullptr, &globalContext, &store); assertCalculationIs("(-8)^(2/3)", DisplayOutput::ExactAndApproximate, EqualSign::Approximation, "-2+2×√(3)×𝐢", nullptr, nullptr, &globalContext, &store); assertCalculationIs("(-2)^(1/4)", DisplayOutput::ExactAndApproximate, EqualSign::Approximation, "root(8,4)/2+root(8,4)/2×𝐢", nullptr, nullptr, &globalContext, &store); Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Polar); assertCalculationIs("1+𝐢", DisplayOutput::ExactAndApproximate, EqualSign::Approximation, "√(2)×ℯ^\u0012π/4×𝐢\u0013", nullptr, nullptr, &globalContext, &store); assertCalculationIs("√(-1)", DisplayOutput::ExactAndApproximate, EqualSign::Approximation, "ℯ^\u0012π/2×𝐢\u0013", nullptr, nullptr, &globalContext, &store); assertCalculationIs("ln(-2)", DisplayOutput::ExactAndApproximate, EqualSign::Approximation, "ln(-2)", nullptr, nullptr, &globalContext, &store); assertCalculationIs("√(-1)×√(-1)", DisplayOutput::ExactAndApproximate, EqualSign::Unknown, nullptr, "ℯ^\u00123.141593×𝐢\u0013", "ℯ^\u00123.1415926535898×𝐢\u0013", &globalContext, &store); assertCalculationIs("(-8)^(1/3)", DisplayOutput::ExactAndApproximate, EqualSign::Approximation, "2×ℯ^\u0012π/3×𝐢\u0013", nullptr, nullptr, &globalContext, &store); assertCalculationIs("(-8)^(2/3)", DisplayOutput::ExactAndApproximate, EqualSign::Approximation, "4×ℯ^\u0012\u00122×π\u0013/3×𝐢\u0013", nullptr, nullptr, &globalContext, &store); assertCalculationIs("(-2)^(1/4)", DisplayOutput::ExactAndApproximate, EqualSign::Approximation, "root(2,4)×ℯ^\u0012π/4×𝐢\u0013", nullptr, nullptr, &globalContext, &store); Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Cartesian); }