#include "logistic_model.h" #include "../store.h" #include #include #include #include #include #include using namespace Poincare; namespace Regression { Layout LogisticModel::layout() { if (m_layout.isUninitialized()) { m_layout = FractionLayout::Builder( CodePointLayout::Builder('c', k_layoutFont), HorizontalLayout::Builder({ CodePointLayout::Builder('1', k_layoutFont), CodePointLayout::Builder('+', k_layoutFont), CodePointLayout::Builder('a', k_layoutFont), CodePointLayout::Builder(UCodePointMiddleDot, k_layoutFont), CodePointLayout::Builder('e', k_layoutFont), VerticalOffsetLayout::Builder( HorizontalLayout::Builder({ CodePointLayout::Builder('-', k_layoutFont), CodePointLayout::Builder('b', k_layoutFont), CodePointLayout::Builder(UCodePointMiddleDot, k_layoutFont), CodePointLayout::Builder('X', k_layoutFont) }), VerticalOffsetLayoutNode::Position::Superscript ) }) ); } return m_layout; } double LogisticModel::evaluate(double * modelCoefficients, double x) const { double a = modelCoefficients[0]; double b = modelCoefficients[1]; double c = modelCoefficients[2]; return c/(1.0+a*exp(-b*x)); } double LogisticModel::levelSet(double * modelCoefficients, double xMin, double step, double xMax, double y, Poincare::Context * context) { double a = modelCoefficients[0]; double b = modelCoefficients[1]; double c = modelCoefficients[2]; if (a == 0 || b == 0 || c == 0 || y == 0) { return NAN; } double lnArgument = (c/y - 1)/a; if (lnArgument <= 0) { return NAN; } return -log(lnArgument)/b; } double LogisticModel::partialDerivate(double * modelCoefficients, int derivateCoefficientIndex, double x) const { double a = modelCoefficients[0]; double b = modelCoefficients[1]; double c = modelCoefficients[2]; double denominator = 1.0 + a * exp(-b * x); if (derivateCoefficientIndex == 0) { // Derivate with respect to a: exp(-b*x)*(-1 * c/(1.0+a*exp(-b*x))^2) return -exp(-b * x) * c / (denominator * denominator); } if (derivateCoefficientIndex == 1) { // Derivate with respect to b: (-x)*a*exp(-b*x)*(-1/(1.0+a*exp(-b*x))^2) return x * a * exp(-b * x) * c / (denominator * denominator); } assert(derivateCoefficientIndex == 2); // Derivate with respect to c: (-x)*a*exp(-b*x)*(-1/(1.0+a*exp(-b*x))^2) return 1.0 / denominator; } void LogisticModel::specializedInitCoefficientsForFit(double * modelCoefficients, double defaultValue, Store * store, int series) const { assert(store != nullptr && series >= 0 && series < Store::k_numberOfSeries && !store->seriesIsEmpty(series)); modelCoefficients[0] = defaultValue; modelCoefficients[1] = defaultValue; /* If the data is a standard logistic function, the ordinates are between 0 * and c. Twice the standard vertical deviation is a rough estimate of c * that is "close enough" to c to seed the coefficient, without being too * dependent on outliers.*/ modelCoefficients[2] = 2.0 * store->standardDeviationOfColumn(series, 1); /* TODO : Try two different sets of seeds to find a better fit for both * x = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0} * y = {5.0, 9.0, 40.0, 64.0, 144.0, 200.0, 269.0, 278.0, 290.0, 295.0} * (Coefficients should be {64.9, 1.0, 297.4}) * And * x = {4, 3, 21, 1, 6} * y = {0, 4, 5, 4, 58} * (Coefficients should be {370162529, 4.266, 31.445} with R2=0.4 at least) */ } }