#include "trigonometric_model.h" #include #include "../../shared/poincare_helpers.h" #include #include #include #include #include #include #include #include #include #include using namespace Poincare; using namespace Shared; namespace Regression { static double toRadians() { return M_PI / Trigonometry::PiInAngleUnit(Poincare::Preferences::sharedPreferences()->angleUnit()); } Layout TrigonometricModel::layout() { if (m_layout.isUninitialized()) { const char * s = "a·sin(b·X+c)+d"; m_layout = LayoutHelper::String(s, strlen(s), k_layoutFont); } return m_layout; } double TrigonometricModel::evaluate(double * modelCoefficients, double x) const { double a = modelCoefficients[0]; double b = modelCoefficients[1]; double c = modelCoefficients[2]; double d = modelCoefficients[3]; double radian = toRadians(); // sin() is here defined for radians, so b*x+c are converted in radians. return a * std::sin(radian * (b * x + c)) + d; } double TrigonometricModel::partialDerivate(double * modelCoefficients, int derivateCoefficientIndex, double x) const { if (derivateCoefficientIndex == 3) { // Derivate with respect to d: 1 return 1.0; } double a = modelCoefficients[0]; double b = modelCoefficients[1]; double c = modelCoefficients[2]; double radian = toRadians(); /* sin() and cos() are here defined for radians, so b*x+c are converted in * radians. The added coefficient also appear in derivatives. */ if (derivateCoefficientIndex == 0) { // Derivate with respect to a: sin(b*x+c) return std::sin(radian * (b * x + c)); } if (derivateCoefficientIndex == 1) { // Derivate with respect to b: x*a*cos(b*x+c); return radian * x * a * std::cos(radian * (b * x + c)); } assert(derivateCoefficientIndex == 2); // Derivate with respect to c: a*cos(b*x+c) return radian * a * std::cos(radian * (b * x + c)); } void TrigonometricModel::specializedInitCoefficientsForFit(double * modelCoefficients, double defaultValue, Store * store, int series) const { assert(store != nullptr && series >= 0 && series < Store::k_numberOfSeries && !store->seriesIsEmpty(series)); /* We try a better initialization than the default value. We hope that this * will improve the gradient descent to find correct coefficients. * * Init the "amplitude" coefficient. We take twice the standard deviation, * because for a normal law, this interval contains 99.73% of the values. We * do not take half of the amplitude of the series, because this would be too * dependent on outliers. */ modelCoefficients[0] = 3.0*store->standardDeviationOfColumn(series, 1); // Init the "y delta" coefficient modelCoefficients[k_numberOfCoefficients - 1] = store->meanOfColumn(series, 1); // Init the b coefficient double rangeX = store->maxValueOfColumn(series, 0) - store->minValueOfColumn(series, 0); double piInAngleUnit = Trigonometry::PiInAngleUnit(Poincare::Preferences::sharedPreferences()->angleUnit()); if (rangeX > 0) { /* b/2π represents the frequency of the sine (in radians). Instead of * initializing it to 0, we use the inverse of X series' range as an order * of magnitude for it. It can help avoiding a regression that overfits the * data with a very high frequency. This period also depends on the * angleUnit. We take it into account so that it doesn't impact the result * (although coefficients b and c depends on the angleUnit). */ modelCoefficients[1] = (2.0 * piInAngleUnit) / rangeX; } else { // Coefficient b must not depend on angleUnit. modelCoefficients[1] = defaultValue * piInAngleUnit; } /* No shift is assumed, coefficient c is set to 0. * If it were to be non-null, angleUnit must be taken into account. * modelCoefficients[2] = initialCValue * piInAngleUnit; */ modelCoefficients[2] = 0.0; } void TrigonometricModel::uniformizeCoefficientsFromFit(double * modelCoefficients) const { // Coefficients must be unique. double piInAngleUnit = Trigonometry::PiInAngleUnit(Poincare::Preferences::sharedPreferences()->angleUnit()); // A must be positive. if (modelCoefficients[0] < 0.0) { // A * sin(B * x + C) + D = -A * sin(B * x + C + π) + D modelCoefficients[0] *= -1.0; modelCoefficients[2] += piInAngleUnit; } // B must be positive. if (modelCoefficients[1] < 0.0) { /* A * sin(B * x + C) + D = -A * sin(-B * x - C) + D * -A * sin(-B * x - C) + D = A * sin(-B * x - C + π) + D */ modelCoefficients[1] *= -1.0; modelCoefficients[2] *= -1.0; modelCoefficients[2] += piInAngleUnit; } // C must be between -π (excluded) and π (included). if (modelCoefficients[2] <= -piInAngleUnit || modelCoefficients[2] > piInAngleUnit) { /* A*sin(B*x + C) + D = A*sin(B*x + C - 2π) = A*sin(B*x + C + 2π) * Using remainder(C,2π) = C - 2π * round(C / 2π) */ modelCoefficients[2] -= 2.0 * piInAngleUnit * std::round(modelCoefficients[2] / (2.0 * piInAngleUnit)); if (modelCoefficients[2] == -piInAngleUnit) { // Keep π instead of -π modelCoefficients[2] = piInAngleUnit; } } } Expression TrigonometricModel::expression(double * modelCoefficients) { double a = modelCoefficients[0]; double b = modelCoefficients[1]; double c = modelCoefficients[2]; double d = modelCoefficients[3]; // a*sin(bx+c)+d Expression result = Addition::Builder( Multiplication::Builder( Number::DecimalNumber(a), Sine::Builder( Addition::Builder( Multiplication::Builder( Number::DecimalNumber(b), Symbol::Builder('x')), Number::DecimalNumber(c)))), Number::DecimalNumber(d)); return result; } }