#include "continuous_function.h" #include "poincare_helpers.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace Poincare; namespace Shared { void ContinuousFunction::DefaultName(char buffer[], size_t bufferSize) { constexpr int k_maxNumberOfDefaultLetterNames = 4; static constexpr const char k_defaultLetterNames[k_maxNumberOfDefaultLetterNames] = { 'f', 'g', 'h', 'p' }; /* First default names are f, g, h, p and then f0, f1... ie, "f[number]", * for instance "f12", that does not exist yet in the storage. */ size_t constantNameLength = 1; // 'f', no null-terminating char assert(bufferSize > constantNameLength+1); // Find the next available name int currentNumber = -k_maxNumberOfDefaultLetterNames; int currentNumberLength = 0; int availableBufferSize = bufferSize - constantNameLength; while (currentNumberLength < availableBufferSize) { // Choose letter buffer[0] = currentNumber < 0 ? k_defaultLetterNames[k_maxNumberOfDefaultLetterNames+currentNumber] : k_defaultLetterNames[0]; // Choose number if required if (currentNumber >= 0) { currentNumberLength = Poincare::Integer(currentNumber).serialize(&buffer[1], availableBufferSize); } else { buffer[1] = 0; } if (GlobalContext::SymbolAbstractNameIsFree(buffer)) { // Name found break; } currentNumber++; } assert(currentNumberLength >= 0 && currentNumberLength < availableBufferSize); } ContinuousFunction ContinuousFunction::NewModel(Ion::Storage::Record::ErrorStatus * error, const char * baseName) { static int s_colorIndex = 0; // Create the record char nameBuffer[SymbolAbstract::k_maxNameSize]; RecordDataBuffer data(Palette::nextDataColor(&s_colorIndex)); if (baseName == nullptr) { DefaultName(nameBuffer, SymbolAbstract::k_maxNameSize); baseName = nameBuffer; } *error = Ion::Storage::sharedStorage()->createRecordWithExtension(baseName, Ion::Storage::funcExtension, &data, sizeof(data)); // Return if error if (*error != Ion::Storage::Record::ErrorStatus::None) { return ContinuousFunction(); } // Return the ContinuousFunction withthe new record return ContinuousFunction(Ion::Storage::sharedStorage()->recordBaseNamedWithExtension(baseName, Ion::Storage::funcExtension)); } int ContinuousFunction::derivativeNameWithArgument(char * buffer, size_t bufferSize) { // Fill buffer with f(x). Keep size for derivative sign. int derivativeSize = UTF8Decoder::CharSizeOfCodePoint('\''); int numberOfChars = nameWithArgument(buffer, bufferSize - derivativeSize); assert(numberOfChars + derivativeSize < (int)bufferSize); char * firstParenthesis = const_cast(UTF8Helper::CodePointSearch(buffer, '(')); if (!UTF8Helper::CodePointIs(firstParenthesis, '(')) { return numberOfChars; } memmove(firstParenthesis + derivativeSize, firstParenthesis, numberOfChars - (firstParenthesis - buffer) + 1); UTF8Decoder::CodePointToChars('\'', firstParenthesis, derivativeSize); return numberOfChars + derivativeSize; } Poincare::Expression ContinuousFunction::expressionReduced(Poincare::Context * context) const { Poincare::Expression result = ExpressionModelHandle::expressionReduced(context); if (plotType() == PlotType::Parametric && ( result.type() != Poincare::ExpressionNode::Type::Matrix || static_cast(result).numberOfRows() != 2 || static_cast(result).numberOfColumns() != 1) ) { return Poincare::Expression::Parse("[[undef][undef]]", nullptr); } return result; } I18n::Message ContinuousFunction::parameterMessageName() const { return ParameterMessageForPlotType(plotType()); } CodePoint ContinuousFunction::symbol() const { switch (plotType()) { case PlotType::Cartesian: return 'x'; case PlotType::Polar: return UCodePointGreekSmallLetterTheta; default: assert(plotType() == PlotType::Parametric); return 't'; } } ContinuousFunction::PlotType ContinuousFunction::plotType() const { return recordData()->plotType(); } void ContinuousFunction::setPlotType(PlotType newPlotType, Poincare::Preferences::AngleUnit angleUnit, Context * context) { PlotType currentPlotType = plotType(); if (newPlotType == currentPlotType) { return; } recordData()->setPlotType(newPlotType); setCache(nullptr); // Recompute the layouts m_model.tidy(); // Recompute the definition domain double tMin = newPlotType == PlotType::Cartesian ? -INFINITY : 0.0; double tMax = newPlotType == PlotType::Cartesian ? INFINITY : 2.0*Trigonometry::PiInAngleUnit(angleUnit); setTMin(tMin); setTMax(tMax); /* Recompute the unknowns. For instance, if the function was f(x) = xθ, it is * stored as f(?) = ?θ. When switching to polar type, it should be stored as * f(?) = ?? */ constexpr int previousTextContentMaxSize = Constant::MaxSerializedExpressionSize; char previousTextContent[previousTextContentMaxSize]; m_model.text(this, previousTextContent, previousTextContentMaxSize, symbol()); setContent(previousTextContent, context); // Handle parametric function switch if (currentPlotType == PlotType::Parametric) { Expression e = expressionClone(); // Change [x(t) y(t)] to y(t) if (!e.isUninitialized() && e.type() == ExpressionNode::Type::Matrix && static_cast(e).numberOfRows() == 2 && static_cast(e).numberOfColumns() == 1) { Expression nextContent = e.childAtIndex(1); /* We need to detach it, otherwise nextContent will think it has a parent * when we retrieve it from the storage. */ nextContent.detachFromParent(); setExpressionContent(nextContent); } return; } else if (newPlotType == PlotType::Parametric) { Expression e = expressionClone(); // Change y(t) to [t y(t)] Matrix newExpr = Matrix::Builder(); newExpr.addChildAtIndexInPlace(Symbol::Builder(UCodePointUnknown), 0, 0); // if y(t) was not uninitialized, insert [t 2t] to set an example e = e.isUninitialized() ? Multiplication::Builder(Rational::Builder(2), Symbol::Builder(UCodePointUnknown)) : e; newExpr.addChildAtIndexInPlace(e, newExpr.numberOfChildren(), newExpr.numberOfChildren()); newExpr.setDimensions(2, 1); setExpressionContent(newExpr); } } I18n::Message ContinuousFunction::ParameterMessageForPlotType(PlotType plotType) { if (plotType == PlotType::Cartesian) { return I18n::Message::X; } if (plotType == PlotType::Polar) { return I18n::Message::Theta; } assert(plotType == PlotType::Parametric); return I18n::Message::T; } template Poincare::Coordinate2D ContinuousFunction::privateEvaluateXYAtParameter(T t, Poincare::Context * context) const { Coordinate2D x1x2 = templatedApproximateAtParameter(t, context); PlotType type = plotType(); if (type == PlotType::Cartesian || type == PlotType::Parametric) { return x1x2; } assert(type == PlotType::Polar); T factor = (T)1.0; Preferences::AngleUnit angleUnit = Preferences::sharedPreferences()->angleUnit(); if (angleUnit == Preferences::AngleUnit::Degree) { factor = (T) (M_PI/180.0); } else if (angleUnit == Preferences::AngleUnit::Gradian) { factor = (T) (M_PI/200.0); } else { assert(angleUnit == Preferences::AngleUnit::Radian); } const float angle = x1x2.x1()*factor; return Coordinate2D(x1x2.x2() * std::cos(angle), x1x2.x2() * std::sin(angle)); } bool ContinuousFunction::displayDerivative() const { return recordData()->displayDerivative(); } void ContinuousFunction::setDisplayDerivative(bool display) { return recordData()->setDisplayDerivative(display); } int ContinuousFunction::printValue(double cursorT, double cursorX, double cursorY, char * buffer, int bufferSize, int precision, Poincare::Context * context) { PlotType type = plotType(); if (type == PlotType::Cartesian) { return Function::printValue(cursorT, cursorX, cursorY, buffer, bufferSize, precision, context); } if (type == PlotType::Polar) { return PoincareHelpers::ConvertFloatToText(evaluate2DAtParameter(cursorT, context).x2(), buffer, bufferSize, precision); } assert(type == PlotType::Parametric); int result = 0; result += UTF8Decoder::CodePointToChars('(', buffer+result, bufferSize-result); result += PoincareHelpers::ConvertFloatToText(cursorX, buffer+result, bufferSize-result, precision); result += UTF8Decoder::CodePointToChars(';', buffer+result, bufferSize-result); result += PoincareHelpers::ConvertFloatToText(cursorY, buffer+result, bufferSize-result, precision); result += UTF8Decoder::CodePointToChars(')', buffer+result, bufferSize-result); return result; } double ContinuousFunction::approximateDerivative(double x, Poincare::Context * context) const { assert(plotType() == PlotType::Cartesian); if (x < tMin() || x > tMax()) { return NAN; } Poincare::Derivative derivative = Poincare::Derivative::Builder(expressionReduced(context).clone(), Symbol::Builder(UCodePointUnknown), Poincare::Float::Builder(x)); // derivative takes ownership of Poincare::Float::Builder(x) and the clone of expression /* TODO: when we approximate derivative, we might want to simplify the * derivative here. However, we might want to do it once for all x (to avoid * lagging in the derivative table. */ return PoincareHelpers::ApproximateToScalar(derivative, context); } float ContinuousFunction::tMin() const { return recordData()->tMin(); } float ContinuousFunction::tMax() const { return recordData()->tMax(); } void ContinuousFunction::setTMin(float tMin) { recordData()->setTMin(tMin); setCache(nullptr); } void ContinuousFunction::setTMax(float tMax) { recordData()->setTMax(tMax); setCache(nullptr); } void ContinuousFunction::rangeForDisplay(float * xMin, float * xMax, float * yMin, float * yMax, Poincare::Context * context, bool tuneXRange) const { if (plotType() == PlotType::Cartesian) { interestingXAndYRangesForDisplay(xMin, xMax, yMin, yMax, context, tuneXRange); } else { fullXYRange(xMin, xMax, yMin, yMax, context); } } void ContinuousFunction::fullXYRange(float * xMin, float * xMax, float * yMin, float * yMax, Context * context) const { assert(yMin && yMax); assert(!(std::isinf(tMin()) || std::isinf(tMax()) || std::isnan(rangeStep()))); float resultXMin = FLT_MAX, resultXMax = - FLT_MAX, resultYMin = FLT_MAX, resultYMax = - FLT_MAX; for (float t = tMin(); t <= tMax(); t += rangeStep()) { Coordinate2D xy = privateEvaluateXYAtParameter(t, context); if (!std::isfinite(xy.x1()) || !std::isfinite(xy.x2())) { continue; } resultXMin = std::min(xy.x1(), resultXMin); resultXMax = std::max(xy.x1(), resultXMax); resultYMin = std::min(xy.x2(), resultYMin); resultYMax = std::max(xy.x2(), resultYMax); } if (xMin) { *xMin = resultXMin; } if (xMax) { *xMax = resultXMax; } *yMin = resultYMin; *yMax = resultYMax; } static float evaluateAndRound(const ContinuousFunction * f, float x, Context * context, float precision = 1e-5) { /* When evaluating sin(x)/x close to zero using the standard sine function, * one can detect small varitions, while the cardinal sine is supposed to be * locally monotonous. To smooth our such variations, we round the result of * the evaluations. As we are not interested in precise results but only in * ordering, this approximation is sufficient. */ return precision * std::round(f->evaluateXYAtParameter(x, context).x2() / precision); } /* TODO : These three methods perform checks that will also be relevant for the * equation solver. Remember to factorize this code when integrating the new * solver. */ static bool boundOfIntervalOfDefinitionIsReached(float y1, float y2) { return std::isfinite(y1) && !std::isinf(y2) && std::isnan(y2); } static bool rootExistsOnInterval(float y1, float y2) { return ((y1 < 0.f && y2 > 0.f) || (y1 > 0.f && y2 < 0.f)); } static bool extremumExistsOnInterval(float y1, float y2, float y3) { return (y1 < y2 && y2 > y3) || (y1 > y2 && y2 < y3); } /* This function checks whether an interval contains an extremum or an * asymptote, by recursively computing the slopes. In case of an extremum, the * slope should taper off toward the center. */ static bool isExtremum(const ContinuousFunction * f, float x1, float x2, float x3, float y1, float y2, float y3, Context * context, int iterations = 3) { if (iterations <= 0) { return false; } float x[2] = {x1, x3}, y[2] = {y1, y3}; float xm, ym; for (int i = 0; i < 2; i++) { xm = (x[i] + x2) / 2.f; ym = evaluateAndRound(f, xm, context); bool res = ((y[i] < ym) != (ym < y2)) ? isExtremum(f, x[i], xm, x2, y[i], ym, y2, context, iterations - 1) : std::fabs(ym - y[i]) >= std::fabs(y2 - ym); if (!res) { return false; } } return true; } enum class PointOfInterest : uint8_t { None, Bound, Extremum, Root }; void ContinuousFunction::interestingXAndYRangesForDisplay(float * xMin, float * xMax, float * yMin, float * yMax, Context * context, bool tuneXRange) const { assert(xMin && xMax && yMin && yMax); assert(plotType() == PlotType::Cartesian); /* Constants of the algorithm. */ constexpr float defaultMaxInterval = 2e5f; constexpr float minDistance = 1e-2f; constexpr float asymptoteThreshold = 2e-1f; constexpr float stepFactor = 1.1f; constexpr int maxNumberOfPoints = 3; constexpr float breathingRoom = 0.3f; constexpr float maxRatioBetweenPoints = 100.f; const bool hasIntervalOfDefinition = std::isfinite(tMin()) && std::isfinite(tMax()); float center, maxDistance; if (!tuneXRange) { center = (*xMax + *xMin) / 2.f; maxDistance = (*xMax - *xMin) / 2.f; } else if (hasIntervalOfDefinition) { center = (tMax() + tMin()) / 2.f; maxDistance = (tMax() - tMin()) / 2.f; } else { center = 0.f; maxDistance = defaultMaxInterval / 2.f; } float resultX[2] = {FLT_MAX, - FLT_MAX}; float resultYMin = FLT_MAX, resultYMax = - FLT_MAX; float asymptote[2] = {FLT_MAX, - FLT_MAX}; int numberOfPoints; float xFallback, yFallback[2] = {NAN, NAN}; float firstResult; float dXOld, dXPrev, dXNext, yOld, yPrev, yNext; /* Look for a point of interest at the center. */ const float a = center - minDistance - FLT_EPSILON, b = center + FLT_EPSILON, c = center + minDistance + FLT_EPSILON; const float ya = evaluateAndRound(this, a, context), yb = evaluateAndRound(this, b, context), yc = evaluateAndRound(this, c, context); if (boundOfIntervalOfDefinitionIsReached(ya, yc) || boundOfIntervalOfDefinitionIsReached(yc, ya) || rootExistsOnInterval(ya, yc) || extremumExistsOnInterval(ya, yb, yc) || ya == yc) { resultX[0] = resultX[1] = center; if (extremumExistsOnInterval(ya, yb, yc) && isExtremum(this, a, b, c, ya, yb, yc, context)) { resultYMin = resultYMax = yb; } } /* We search for points of interest by exploring the function leftward from * the center and then rightward, hence the two iterations. */ for (int i = 0; i < 2; i++) { /* Initialize the search parameters. */ numberOfPoints = 0; firstResult = NAN; xFallback = NAN; dXPrev = i == 0 ? - minDistance : minDistance; dXNext = dXPrev * stepFactor; yPrev = evaluateAndRound(this, center + dXPrev, context); yNext = evaluateAndRound(this, center + dXNext, context); while(std::fabs(dXPrev) < maxDistance) { /* Update the slider. */ dXOld = dXPrev; dXPrev = dXNext; dXNext *= stepFactor; yOld = yPrev; yPrev = yNext; yNext = evaluateAndRound(this, center + dXNext, context); if (std::isinf(yNext)) { continue; } /* Check for a change in the profile. */ const PointOfInterest variation = boundOfIntervalOfDefinitionIsReached(yPrev, yNext) ? PointOfInterest::Bound : rootExistsOnInterval(yPrev, yNext) ? PointOfInterest::Root : extremumExistsOnInterval(yOld, yPrev, yNext) ? PointOfInterest::Extremum : PointOfInterest::None; switch (static_cast(variation)) { /* The fall through is intentional, as we only want to update the Y * range when an extremum is detected, but need to update the X range * in all cases. */ case static_cast(PointOfInterest::Extremum): if (isExtremum(this, center + dXOld, center + dXPrev, center + dXNext, yOld, yPrev, yNext, context)) { resultYMin = std::min(resultYMin, yPrev); resultYMax = std::max(resultYMax, yPrev); } case static_cast(PointOfInterest::Bound): /* We only count extrema / discontinuities for limiting the number * of points. This prevents cos(x) and cos(x)+2 from having different * profiles. */ if (++numberOfPoints == maxNumberOfPoints) { /* When too many points are encountered, we prepare their erasure by * setting a restore point. */ xFallback = dXNext + center; yFallback[0] = resultYMin; yFallback[1] = resultYMax; } case static_cast(PointOfInterest::Root): asymptote[i] = i == 0 ? FLT_MAX : - FLT_MAX; resultX[0] = std::min(resultX[0], center + (i == 0 ? dXNext : dXPrev)); resultX[1] = std::max(resultX[1], center + (i == 1 ? dXNext : dXPrev)); if (std::isnan(firstResult)) { firstResult = dXNext; } break; default: const float slopeNext = (yNext - yPrev) / (dXNext - dXPrev), slopePrev = (yPrev - yOld) / (dXPrev - dXOld); if ((std::fabs(slopeNext) < asymptoteThreshold) && (std::fabs(slopePrev) > asymptoteThreshold)) { // Horizontal asymptote begins asymptote[i] = (i == 0) ? std::min(asymptote[i], center + dXNext) : std::max(asymptote[i], center + dXNext); } else if ((std::fabs(slopeNext) < asymptoteThreshold) && (std::fabs(slopePrev) > asymptoteThreshold)) { // Horizontal asymptote invalidates : it might be an asymptote when // going the other way. asymptote[1 - i] = (i == 1) ? std::min(asymptote[1 - i], center + dXPrev) : std::max(asymptote[1 - i], center + dXPrev); } } } if (std::fabs(resultX[i]) > std::fabs(firstResult) * maxRatioBetweenPoints && !std::isnan(xFallback)) { /* When there are too many points, cut them if their orders are too * different. */ resultX[i] = xFallback; resultYMin = yFallback[0]; resultYMax = yFallback[1]; } } if (tuneXRange) { /* Cut after horizontal asymptotes. */ resultX[0] = std::min(resultX[0], asymptote[0]); resultX[1] = std::max(resultX[1], asymptote[1]); if (resultX[0] >= resultX[1]) { /* Fallback to default range. */ resultX[0] = - Range1D::k_default; resultX[1] = Range1D::k_default; } else { /* Add breathing room around points of interest. */ float xRange = resultX[1] - resultX[0]; resultX[0] -= breathingRoom * xRange; resultX[1] += breathingRoom * xRange; /* Round to the next integer. */ resultX[0] = std::floor(resultX[0]); resultX[1] = std::ceil(resultX[1]); } *xMin = std::min(resultX[0], *xMin); *xMax = std::max(resultX[1], *xMax); } *yMin = std::min(resultYMin, *yMin); *yMax = std::max(resultYMax, *yMax); refinedYRangeForDisplay(*xMin, *xMax, yMin, yMax, context); } void ContinuousFunction::refinedYRangeForDisplay(float xMin, float xMax, float * yMin, float * yMax, Context * context) const { /* This methods computes the Y range that will be displayed for the cartesian * function, given an X range (xMin, xMax) and bounds yMin and yMax that must * be inside the Y range.*/ assert(plotType() == PlotType::Cartesian); assert(yMin && yMax); constexpr int sampleSize = Ion::Display::Width / 4; constexpr float boundNegligigbleThreshold = 0.2f; float sampleYMin = FLT_MAX, sampleYMax = -FLT_MAX; const float step = (xMax - xMin) / (sampleSize - 1); float x, y; float sum = 0.f; int pop = 0; for (int i = 1; i < sampleSize; i++) { x = xMin + i * step; y = privateEvaluateXYAtParameter(x, context).x2(); sampleYMin = std::min(sampleYMin, y); sampleYMax = std::max(sampleYMax, y); if (std::isfinite(y) && std::fabs(y) > FLT_EPSILON) { sum += std::log(std::fabs(y)); pop++; } } /* sum/pop is the log mean value of the function, which can be interpreted as * its average order of magnitude. Then, bound is the value for the next * order of magnitude and is used to cut the Y range. */ float bound = (pop > 0) ? std::exp(sum / pop + 1.f) : FLT_MAX; *yMin = std::min(*yMin, std::max(sampleYMin, -bound)); *yMax = std::max(*yMax, std::min(sampleYMax, bound)); if (*yMin == *yMax) { float d = (*yMin == 0.f) ? 1.f : *yMin * 0.2f; *yMin -= d; *yMax += d; } /* Round out the smallest bound to 0 if it is negligible compare to the * other one. This way, we can display the X axis for positive functions such * as sqrt(x) even if we do not sample close to 0. */ if (*yMin > 0.f && *yMin / *yMax < boundNegligigbleThreshold) { *yMin = 0.f; } else if (*yMax < 0.f && *yMax / *yMin < boundNegligigbleThreshold) { *yMax = 0.f; } } void * ContinuousFunction::Model::expressionAddress(const Ion::Storage::Record * record) const { return (char *)record->value().buffer+sizeof(RecordDataBuffer); } size_t ContinuousFunction::Model::expressionSize(const Ion::Storage::Record * record) const { return record->value().size-sizeof(RecordDataBuffer); } ContinuousFunction::RecordDataBuffer * ContinuousFunction::recordData() const { assert(!isNull()); Ion::Storage::Record::Data d = value(); return reinterpret_cast(const_cast(d.buffer)); } template Coordinate2D ContinuousFunction::templatedApproximateAtParameter(T t, Poincare::Context * context) const { if (t < tMin() || t > tMax()) { return Coordinate2D(plotType() == PlotType::Cartesian ? t : NAN, NAN); } constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1; char unknown[bufferSize]; Poincare::SerializationHelper::CodePoint(unknown, bufferSize, UCodePointUnknown); PlotType type = plotType(); Expression e = expressionReduced(context); if (type != PlotType::Parametric) { assert(type == PlotType::Cartesian || type == PlotType::Polar); return Coordinate2D(t, PoincareHelpers::ApproximateWithValueForSymbol(e, unknown, t, context)); } assert(e.type() == ExpressionNode::Type::Matrix); assert(static_cast(e).numberOfRows() == 2); assert(static_cast(e).numberOfColumns() == 1); return Coordinate2D( PoincareHelpers::ApproximateWithValueForSymbol(e.childAtIndex(0), unknown, t, context), PoincareHelpers::ApproximateWithValueForSymbol(e.childAtIndex(1), unknown, t, context)); } Coordinate2D ContinuousFunction::nextMinimumFrom(double start, double step, double max, Context * context) const { return nextPointOfInterestFrom(start, step, max, context, [](Expression e, char * symbol, double start, double step, double max, Context * context) { return PoincareHelpers::NextMinimum(e, symbol, start, step, max, context); }); } Coordinate2D ContinuousFunction::nextMaximumFrom(double start, double step, double max, Context * context) const { return nextPointOfInterestFrom(start, step, max, context, [](Expression e, char * symbol, double start, double step, double max, Context * context) { return PoincareHelpers::NextMaximum(e, symbol, start, step, max, context); }); } Coordinate2D ContinuousFunction::nextRootFrom(double start, double step, double max, Context * context) const { return nextPointOfInterestFrom(start, step, max, context, [](Expression e, char * symbol, double start, double step, double max, Context * context) { return Coordinate2D(PoincareHelpers::NextRoot(e, symbol, start, step, max, context), 0.0); }); } Coordinate2D ContinuousFunction::nextIntersectionFrom(double start, double step, double max, Poincare::Context * context, Poincare::Expression e, double eDomainMin, double eDomainMax) const { assert(plotType() == PlotType::Cartesian); constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1; char unknownX[bufferSize]; SerializationHelper::CodePoint(unknownX, bufferSize, UCodePointUnknown); double domainMin = std::max(tMin(), eDomainMin); double domainMax = std::min(tMax(), eDomainMax); if (step > 0.0f) { start = std::max(start, domainMin); max = std::min(max, domainMax); } else { start = std::min(start, domainMax); max = std::max(max, domainMin); } return PoincareHelpers::NextIntersection(expressionReduced(context), unknownX, start, step, max, context, e); } Coordinate2D ContinuousFunction::nextPointOfInterestFrom(double start, double step, double max, Context * context, ComputePointOfInterest compute) const { assert(plotType() == PlotType::Cartesian); constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1; char unknownX[bufferSize]; SerializationHelper::CodePoint(unknownX, bufferSize, UCodePointUnknown); if (step > 0.0f) { start = std::max(start, tMin()); max = std::min(max, tMax()); } else { start = std::min(start, tMax()); max = std::max(max, tMin()); } return compute(expressionReduced(context), unknownX, start, step, max, context); } Poincare::Expression ContinuousFunction::sumBetweenBounds(double start, double end, Poincare::Context * context) const { assert(plotType() == PlotType::Cartesian); start = std::max(start, tMin()); end = std::min(end, tMax()); return Poincare::Integral::Builder(expressionReduced(context).clone(), Poincare::Symbol::Builder(UCodePointUnknown), Poincare::Float::Builder(start), Poincare::Float::Builder(end)); // Integral takes ownership of args /* TODO: when we approximate integral, we might want to simplify the integral * here. However, we might want to do it once for all x (to avoid lagging in * the derivative table. */ } Ion::Storage::Record::ErrorStatus ContinuousFunction::setContent(const char * c, Poincare::Context * context) { setCache(nullptr); return ExpressionModelHandle::setContent(c, context); } template Coordinate2D ContinuousFunction::templatedApproximateAtParameter(float, Poincare::Context *) const; template Coordinate2D ContinuousFunction::templatedApproximateAtParameter(double, Poincare::Context *) const; template Poincare::Coordinate2D ContinuousFunction::privateEvaluateXYAtParameter(float, Poincare::Context *) const; template Poincare::Coordinate2D ContinuousFunction::privateEvaluateXYAtParameter(double, Poincare::Context *) const; }