extern "C" { #include "modtime.h" #include #include } #include #include #include "../../helpers.h" mp_obj_t modtime_sleep(mp_obj_t seconds_o) { #if MICROPY_PY_BUILTINS_FLOAT micropython_port_interruptible_msleep(1000 * mp_obj_get_float(seconds_o)); #else micropython_port_interruptible_msleep(1000 * mp_obj_get_int(seconds_o)); #endif return mp_const_none; } mp_obj_t modtime_monotonic() { return mp_obj_new_float(Ion::Timing::millis() / 1000.0); } // // Upsilon extensions, based off MicroPython's modutime.c // // LEAPOCH corresponds to 2000-03-01, which is a mod-400 year, immediately // after Feb 29. We calculate seconds as a signed integer relative to that. // // Our timebase is relative to 2000-01-01. constexpr int LEAPOCH = ((31 + 29) * 86400); constexpr int DAYS_PER_400Y = (365 * 400 + 97); constexpr int DAYS_PER_100Y = (365 * 100 + 24); constexpr int DAYS_PER_4Y = (365 * 4 + 1); static const uint16_t days_since_jan1[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }; bool timeutils_is_leap_year(mp_uint_t year) { return (year % 4 == 0 && year % 100 != 0) || year % 400 == 0; } // month is one based mp_uint_t timeutils_days_in_month(mp_uint_t year, mp_uint_t month) { mp_uint_t mdays = days_since_jan1[month] - days_since_jan1[month - 1]; if (month == 2 && timeutils_is_leap_year(year)) { mdays++; } return mdays; } // compute the day of the year, between 1 and 366 // month should be between 1 and 12, date should start at 1 mp_uint_t timeutils_year_day(mp_uint_t year, mp_uint_t month, mp_uint_t date) { mp_uint_t yday = days_since_jan1[month - 1] + date; if (month >= 3 && timeutils_is_leap_year(year)) { yday += 1; } return yday; } Ion::RTC::DateTime timeutils_seconds_since_2000_to_struct_time(mp_uint_t t) { Ion::RTC::DateTime tm; // The following algorithm was adapted from musl's __secs_to_tm and adapted // for differences in MicroPython's timebase. mp_int_t seconds = t - LEAPOCH; mp_int_t days = seconds / 86400; seconds %= 86400; if (seconds < 0) { seconds += 86400; days -= 1; } tm.tm_hour = seconds / 3600; tm.tm_min = seconds / 60 % 60; tm.tm_sec = seconds % 60; mp_int_t wday = (days + 2) % 7; // Mar 1, 2000 was a Wednesday (2) if (wday < 0) { wday += 7; } tm.tm_wday = wday; mp_int_t qc_cycles = days / DAYS_PER_400Y; days %= DAYS_PER_400Y; if (days < 0) { days += DAYS_PER_400Y; qc_cycles--; } mp_int_t c_cycles = days / DAYS_PER_100Y; if (c_cycles == 4) { c_cycles--; } days -= (c_cycles * DAYS_PER_100Y); mp_int_t q_cycles = days / DAYS_PER_4Y; if (q_cycles == 25) { q_cycles--; } days -= q_cycles * DAYS_PER_4Y; mp_int_t years = days / 365; if (years == 4) { years--; } days -= (years * 365); tm.tm_year = 2000 + years + 4 * q_cycles + 100 * c_cycles + 400 * qc_cycles; // Note: days_in_month[0] corresponds to March static const int8_t days_in_month[] = {31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29}; mp_int_t month; for (month = 0; days_in_month[month] <= days; month++) { days -= days_in_month[month]; } tm.tm_mon = month + 2; if (tm.tm_mon >= 12) { tm.tm_mon -= 12; tm.tm_year++; } tm.tm_mday = days + 1; // Make one based tm.tm_mon++; // Make one based return tm; } // returns the number of seconds, as an integer, since 2000-01-01 mp_uint_t timeutils_seconds_since_2000(Ion::RTC::DateTime tm) { return tm.tm_sec + tm.tm_min * 60 + tm.tm_hour * 3600 + (timeutils_year_day(tm.tm_year, tm.tm_mon, tm.tm_mday) - 1 + ((tm.tm_year - 2000 + 3) / 4) // add a day each 4 years starting with 2001 - ((tm.tm_year - 2000 + 99) / 100) // subtract a day each 100 years starting with 2001 + ((tm.tm_year - 2000 + 399) / 400) // add a day each 400 years starting with 2001 ) * 86400 + (tm.tm_year - 2000) * 31536000; } mp_uint_t timeutils_mktime(Ion::RTC::DateTime tm) { // Normalize the tuple. This allows things like: // // tm_tomorrow = list(time.localtime()) // tm_tomorrow[2] += 1 # Adds 1 to mday // tomorrow = time.mktime(tm_tomorrow) // // And not have to worry about all the weird overflows. // // You can subtract dates/times this way as well. tm.tm_min += tm.tm_sec / 60; if ((tm.tm_sec = tm.tm_sec % 60) < 0) { tm.tm_sec += 60; tm.tm_min--; } tm.tm_hour += tm.tm_min / 60; if ((tm.tm_min = tm.tm_min % 60) < 0) { tm.tm_min += 60; tm.tm_hour--; } tm.tm_mday += tm.tm_hour / 24; if ((tm.tm_hour = tm.tm_hour % 24) < 0) { tm.tm_hour += 24; tm.tm_mday--; } tm.tm_mon--; // make month zero based tm.tm_year += tm.tm_mon / 12; if ((tm.tm_mon = tm.tm_mon % 12) < 0) { tm.tm_mon += 12; tm.tm_year--; } tm.tm_mon++; // back to one based while (tm.tm_mday < 1) { if (--tm.tm_mon == 0) { tm.tm_mon = 12; tm.tm_year--; } tm.tm_mday += timeutils_days_in_month(tm.tm_year, tm.tm_mon); } while ((mp_uint_t)tm.tm_mday > timeutils_days_in_month(tm.tm_year, tm.tm_mon)) { tm.tm_mday -= timeutils_days_in_month(tm.tm_year, tm.tm_mon); if (++tm.tm_mon == 13) { tm.tm_mon = 1; tm.tm_year++; } } return timeutils_seconds_since_2000(tm); } mp_obj_t modtime_localtime(size_t n_args, const mp_obj_t *args) { Ion::RTC::DateTime tm; if (n_args == 0 || args[0] == mp_const_none) { tm = Ion::RTC::dateTime(); } else { mp_int_t seconds = mp_obj_get_int(args[0]); tm = timeutils_seconds_since_2000_to_struct_time(seconds); } mp_obj_t tuple[8] = { tuple[0] = mp_obj_new_int(tm.tm_year), tuple[1] = mp_obj_new_int(tm.tm_mon), tuple[2] = mp_obj_new_int(tm.tm_mday), tuple[3] = mp_obj_new_int(tm.tm_hour), tuple[4] = mp_obj_new_int(tm.tm_min), tuple[5] = mp_obj_new_int(tm.tm_sec), tuple[6] = mp_obj_new_int(tm.tm_wday), tuple[7] = mp_obj_new_int(timeutils_year_day(tm.tm_year, tm.tm_mon, tm.tm_mday)), }; return mp_obj_new_tuple(8, tuple); } mp_obj_t modtime_mktime(mp_obj_t tuple) { size_t len; mp_obj_t *elem; mp_obj_get_array(tuple, &len, &elem); // localtime generates a tuple of len 8. CPython uses 9, so we accept both. if (len < 8 || len > 9) { mp_raise_TypeError("mktime needs a tuple of length 8 or 9"); } Ion::RTC::DateTime tm { (int)mp_obj_get_int(elem[5]), (int)mp_obj_get_int(elem[4]), (int)mp_obj_get_int(elem[3]), (int)mp_obj_get_int(elem[2]), (int)mp_obj_get_int(elem[1]), (int)mp_obj_get_int(elem[0]), }; return mp_obj_new_int_from_uint(timeutils_mktime(tm)); } mp_obj_t modtime_time(void) { return mp_obj_new_int(timeutils_seconds_since_2000(Ion::RTC::dateTime())); } // Omega private extensions. mp_obj_t modtime_rtcmode(void) { return mp_obj_new_int((int)Ion::RTC::mode()); } mp_obj_t modtime_setrtcmode(mp_obj_t mode) { mp_int_t intMode = mp_obj_get_int(mode); if (intMode < (int)Ion::RTC::Mode::Disabled || intMode > (int)Ion::RTC::Mode::HSE) { mp_raise_ValueError("mode must be between 0 and 2"); } Ion::RTC::setMode((Ion::RTC::Mode)intMode); return mp_const_none; } mp_obj_t modtime_setlocaltime(mp_obj_t tuple) { size_t len; mp_obj_t *elem; mp_obj_get_array(tuple, &len, &elem); if (len < 5) { mp_raise_TypeError("setlocaltime needs a tuple of length >= 5"); } Ion::RTC::DateTime tm { len > 5 ? (int)mp_obj_get_int(elem[5]) : 0, (int)mp_obj_get_int(elem[4]), (int)mp_obj_get_int(elem[3]), (int)mp_obj_get_int(elem[2]), (int)mp_obj_get_int(elem[1]), (int)mp_obj_get_int(elem[0]), }; Ion::RTC::setDateTime(tm); return mp_const_none; }