#include "cartesian_function.h" #include "expression_model_store.h" #include "poincare_helpers.h" #include #include #include #include #include #include #include using namespace Poincare; namespace Shared { void CartesianFunction::DefaultName(char buffer[], size_t bufferSize) { constexpr int k_maxNumberOfDefaultLetterNames = 4; static constexpr const char k_defaultLetterNames[k_maxNumberOfDefaultLetterNames] = { 'f', 'g', 'h', 'p' }; /* First default names are f, g, h, p and then f0, f1... ie, "f[number]", * for instance "f12", that does not exist yet in the storage. */ size_t constantNameLength = 1; // 'f', no null-terminating char assert(bufferSize > constantNameLength+1); // Find the next available name int currentNumber = -k_maxNumberOfDefaultLetterNames; int currentNumberLength = 0; int availableBufferSize = bufferSize - constantNameLength; while (currentNumberLength < availableBufferSize) { // Choose letter buffer[0] = currentNumber < 0 ? k_defaultLetterNames[k_maxNumberOfDefaultLetterNames+currentNumber] : k_defaultLetterNames[0]; // Choose number if required if (currentNumber >= 0) { currentNumberLength = Poincare::Integer(currentNumber).serialize(&buffer[1], availableBufferSize); } else { buffer[1] = 0; } if (GlobalContext::SymbolAbstractNameIsFree(buffer)) { // Name found break; } currentNumber++; } assert(currentNumberLength >= 0 && currentNumberLength < availableBufferSize); } CartesianFunction CartesianFunction::NewModel(Ion::Storage::Record::ErrorStatus * error, const char * baseName) { static int s_colorIndex = 0; // Create the record char nameBuffer[SymbolAbstract::k_maxNameSize]; int numberOfColors = sizeof(Palette::DataColor)/sizeof(KDColor); CartesianFunctionRecordDataBuffer data(Palette::DataColor[s_colorIndex++ % numberOfColors]); if (baseName == nullptr) { DefaultName(nameBuffer, SymbolAbstract::k_maxNameSize); baseName = nameBuffer; } *error = Ion::Storage::sharedStorage()->createRecordWithExtension(baseName, Ion::Storage::funcExtension, &data, sizeof(data)); // Return if error if (*error != Ion::Storage::Record::ErrorStatus::None) { return CartesianFunction(); } // Return the CartesianFunction withthe new record return CartesianFunction(Ion::Storage::sharedStorage()->recordBaseNamedWithExtension(baseName, Ion::Storage::funcExtension)); } int CartesianFunction::derivativeNameWithArgument(char * buffer, size_t bufferSize) { // Fill buffer with f(x). Keep size for derivative sign. int derivativeSize = UTF8Decoder::CharSizeOfCodePoint('\''); int numberOfChars = nameWithArgument(buffer, bufferSize - derivativeSize); assert(numberOfChars + derivativeSize < (int)bufferSize); char * firstParenthesis = const_cast(UTF8Helper::CodePointSearch(buffer, '(')); if (!UTF8Helper::CodePointIs(firstParenthesis, '(')) { return numberOfChars; } memmove(firstParenthesis + derivativeSize, firstParenthesis, numberOfChars - (firstParenthesis - buffer) + 1); UTF8Decoder::CodePointToChars('\'', firstParenthesis, derivativeSize); return numberOfChars + derivativeSize; } Poincare::Expression CartesianFunction::expressionReduced(Poincare::Context * context) const { Poincare::Expression result = ExpressionModelHandle::expressionReduced(context); if (plotType() == PlotType::Parametric && ( result.type() != Poincare::ExpressionNode::Type::Matrix || static_cast(result).numberOfRows() != 2 || static_cast(result).numberOfColumns() != 1) ) { return Poincare::Expression::Parse("[[undef][undef]]"); } return result; } CodePoint CartesianFunction::symbol() const { switch (plotType()) { case PlotType::Cartesian: return 'x'; case PlotType::Polar: return UCodePointGreekSmallLetterTheta; default: assert(plotType() == PlotType::Parametric); return 't'; } } CartesianFunction::PlotType CartesianFunction::plotType() const { return recordData()->plotType(); } void CartesianFunction::setPlotType(PlotType newPlotType) { PlotType currentPlotType = plotType(); if (newPlotType == currentPlotType) { return; } /* Reset memoized layout. */ Expression e = expressionClone(); m_model.tidy(); double tMin = newPlotType == PlotType::Cartesian ? -INFINITY : 0.0; double tMax = newPlotType == PlotType::Cartesian ? INFINITY : 360.0; setTMin(tMin); setTMax(tMax); recordData()->setPlotType(newPlotType); if (currentPlotType == PlotType::Parametric) { // Change [x(t) y(t)] to y(t) if (e.type() == ExpressionNode::Type::Matrix && static_cast(e).numberOfRows() == 2 && static_cast(e).numberOfColumns() == 1) { Expression nextContent = e.childAtIndex(1); /* We need to detach it, otherwise nextContent will think it has a parent * when we retrieve it from the storage. */ nextContent.detachFromParent(); setExpressionContent(nextContent); } return; } else if (newPlotType == PlotType::Parametric) { // Change y(t) to [t y(t)] Matrix newExpr = Matrix::Builder(); newExpr.addChildAtIndexInPlace(Symbol::Builder(UCodePointUnknownX), 0, 0); newExpr.addChildAtIndexInPlace(e, newExpr.numberOfChildren(), newExpr.numberOfChildren()); newExpr.setDimensions(2, 1); setExpressionContent(newExpr); } } template Poincare::Coordinate2D CartesianFunction::privateEvaluateXYAtParameter(T t, Poincare::Context * context) const { Coordinate2D x1x2 = templatedApproximateAtParameter(t, context); PlotType type = plotType(); if (type == PlotType::Cartesian || type == PlotType::Parametric) { return x1x2; } assert(type == PlotType::Polar); T factor = (T)1.0; Preferences::AngleUnit angleUnit = Preferences::sharedPreferences()->angleUnit(); if (angleUnit == Preferences::AngleUnit::Degree) { factor = (T) (M_PI/180.0); } else if (angleUnit == Preferences::AngleUnit::Gradian) { factor = (T) (M_PI/200.0); } else { assert(angleUnit == Preferences::AngleUnit::Radian); } const float angle = x1x2.x1()*factor; return Coordinate2D(x1x2.x2() * std::cos(angle), x1x2.x2() * std::sin(angle)); } bool CartesianFunction::displayDerivative() const { return recordData()->displayDerivative(); } void CartesianFunction::setDisplayDerivative(bool display) { return recordData()->setDisplayDerivative(display); } int CartesianFunction::printValue(double cursorT, double cursorX, double cursorY, char * buffer, int bufferSize, int precision, Poincare::Context * context) { PlotType type = plotType(); if (type == PlotType::Cartesian) { return Function::printValue(cursorT, cursorX, cursorY, buffer, bufferSize, precision, context); } if (type == PlotType::Polar) { return PoincareHelpers::ConvertFloatToText(evaluate2DAtParameter(cursorT, context).x2(), buffer, bufferSize, precision); } assert(type == PlotType::Parametric); int result = 0; result += UTF8Decoder::CodePointToChars('(', buffer+result, bufferSize-result); result += PoincareHelpers::ConvertFloatToText(cursorX, buffer+result, bufferSize-result, precision); result += UTF8Decoder::CodePointToChars(';', buffer+result, bufferSize-result); result += PoincareHelpers::ConvertFloatToText(cursorY, buffer+result, bufferSize-result, precision); result += UTF8Decoder::CodePointToChars(')', buffer+result, bufferSize-result); return result; } double CartesianFunction::approximateDerivative(double x, Poincare::Context * context) const { Poincare::Derivative derivative = Poincare::Derivative::Builder(expressionReduced(context).clone(), Symbol::Builder(UCodePointUnknownX), Poincare::Float::Builder(x)); // derivative takes ownership of Poincare::Float::Builder(x) and the clone of expression /* TODO: when we approximate derivative, we might want to simplify the * derivative here. However, we might want to do it once for all x (to avoid * lagging in the derivative table. */ return PoincareHelpers::ApproximateToScalar(derivative, context); } double CartesianFunction::tMin() const { return recordData()->tMin(); } double CartesianFunction::tMax() const { return recordData()->tMax(); } void CartesianFunction::setTMin(double tMin) { recordData()->setTMin(tMin); } void CartesianFunction::setTMax(double tMax) { recordData()->setTMax(tMax); } void * CartesianFunction::Model::expressionAddress(const Ion::Storage::Record * record) const { return (char *)record->value().buffer+sizeof(CartesianFunctionRecordDataBuffer); } size_t CartesianFunction::Model::expressionSize(const Ion::Storage::Record * record) const { return record->value().size-sizeof(CartesianFunctionRecordDataBuffer); } CartesianFunction::CartesianFunctionRecordDataBuffer * CartesianFunction::recordData() const { assert(!isNull()); Ion::Storage::Record::Data d = value(); return reinterpret_cast(const_cast(d.buffer)); } template Coordinate2D CartesianFunction::templatedApproximateAtParameter(T t, Poincare::Context * context) const { if (isCircularlyDefined(context) || t < tMin() || t > tMax()) { return Coordinate2D(NAN, NAN); } constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1; char unknown[bufferSize]; Poincare::SerializationHelper::CodePoint(unknown, bufferSize, UCodePointUnknownX); PlotType type = plotType(); if (type == PlotType::Cartesian || type == PlotType::Polar) { return Coordinate2D(t, PoincareHelpers::ApproximateWithValueForSymbol(expressionReduced(context), unknown, t, context)); } assert(type == PlotType::Parametric); Expression e = expressionReduced(context); assert(e.type() == ExpressionNode::Type::Matrix); assert(static_cast(e).numberOfRows() == 2); assert(static_cast(e).numberOfColumns() == 1); return Coordinate2D( PoincareHelpers::ApproximateWithValueForSymbol(e.childAtIndex(0), unknown, t, context), PoincareHelpers::ApproximateWithValueForSymbol(e.childAtIndex(1), unknown, t, context)); } template Coordinate2D CartesianFunction::templatedApproximateAtParameter(float, Poincare::Context *) const; template Coordinate2D CartesianFunction::templatedApproximateAtParameter(double, Poincare::Context *) const; }