#include "continuous_function.h" #include "poincare_helpers.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace Poincare; namespace Shared { void ContinuousFunction::DefaultName(char buffer[], size_t bufferSize) { constexpr int k_maxNumberOfDefaultLetterNames = 4; static constexpr const char k_defaultLetterNames[k_maxNumberOfDefaultLetterNames] = { 'f', 'g', 'h', 'p' }; /* First default names are f, g, h, p and then f0, f1... ie, "f[number]", * for instance "f12", that does not exist yet in the storage. */ size_t constantNameLength = 1; // 'f', no null-terminating char assert(bufferSize > constantNameLength+1); // Find the next available name int currentNumber = -k_maxNumberOfDefaultLetterNames; int currentNumberLength = 0; int availableBufferSize = bufferSize - constantNameLength; while (currentNumberLength < availableBufferSize) { // Choose letter buffer[0] = currentNumber < 0 ? k_defaultLetterNames[k_maxNumberOfDefaultLetterNames+currentNumber] : k_defaultLetterNames[0]; // Choose number if required if (currentNumber >= 0) { currentNumberLength = Poincare::Integer(currentNumber).serialize(&buffer[1], availableBufferSize); } else { buffer[1] = 0; } if (GlobalContext::SymbolAbstractNameIsFree(buffer)) { // Name found break; } currentNumber++; } assert(currentNumberLength >= 0 && currentNumberLength < availableBufferSize); } ContinuousFunction ContinuousFunction::NewModel(Ion::Storage::Record::ErrorStatus * error, const char * baseName) { static int s_colorIndex = 0; // Create the record char nameBuffer[SymbolAbstract::k_maxNameSize]; RecordDataBuffer data(Palette::nextDataColor(&s_colorIndex)); if (baseName == nullptr) { DefaultName(nameBuffer, SymbolAbstract::k_maxNameSize); baseName = nameBuffer; } *error = Ion::Storage::sharedStorage()->createRecordWithExtension(baseName, Ion::Storage::funcExtension, &data, sizeof(data)); // Return if error if (*error != Ion::Storage::Record::ErrorStatus::None) { return ContinuousFunction(); } // Return the ContinuousFunction withthe new record return ContinuousFunction(Ion::Storage::sharedStorage()->recordBaseNamedWithExtension(baseName, Ion::Storage::funcExtension)); } int ContinuousFunction::derivativeNameWithArgument(char * buffer, size_t bufferSize) { // Fill buffer with f(x). Keep size for derivative sign. int derivativeSize = UTF8Decoder::CharSizeOfCodePoint('\''); int numberOfChars = nameWithArgument(buffer, bufferSize - derivativeSize); assert(numberOfChars + derivativeSize < (int)bufferSize); char * firstParenthesis = const_cast(UTF8Helper::CodePointSearch(buffer, '(')); if (!UTF8Helper::CodePointIs(firstParenthesis, '(')) { return numberOfChars; } memmove(firstParenthesis + derivativeSize, firstParenthesis, numberOfChars - (firstParenthesis - buffer) + 1); UTF8Decoder::CodePointToChars('\'', firstParenthesis, derivativeSize); return numberOfChars + derivativeSize; } Poincare::Expression ContinuousFunction::expressionReduced(Poincare::Context * context) const { Poincare::Expression result = ExpressionModelHandle::expressionReduced(context); if (plotType() == PlotType::Parametric && ( result.type() != Poincare::ExpressionNode::Type::Matrix || static_cast(result).numberOfRows() != 2 || static_cast(result).numberOfColumns() != 1) ) { return Poincare::Expression::Parse("[[undef][undef]]", nullptr); } return result; } I18n::Message ContinuousFunction::parameterMessageName() const { return ParameterMessageForPlotType(plotType()); } CodePoint ContinuousFunction::symbol() const { switch (plotType()) { case PlotType::Cartesian: return 'x'; case PlotType::Polar: return UCodePointGreekSmallLetterTheta; default: assert(plotType() == PlotType::Parametric); return 't'; } } ContinuousFunction::PlotType ContinuousFunction::plotType() const { return recordData()->plotType(); } void ContinuousFunction::setPlotType(PlotType newPlotType, Poincare::Preferences::AngleUnit angleUnit, Context * context) { PlotType currentPlotType = plotType(); if (newPlotType == currentPlotType) { return; } recordData()->setPlotType(newPlotType); setCache(nullptr); // Recompute the layouts m_model.tidy(); // Recompute the definition domain double tMin = newPlotType == PlotType::Cartesian ? -INFINITY : 0.0; double tMax = newPlotType == PlotType::Cartesian ? INFINITY : 2.0*Trigonometry::PiInAngleUnit(angleUnit); setTMin(tMin); setTMax(tMax); /* Recompute the unknowns. For instance, if the function was f(x) = xθ, it is * stored as f(?) = ?θ. When switching to polar type, it should be stored as * f(?) = ?? */ constexpr int previousTextContentMaxSize = Constant::MaxSerializedExpressionSize; char previousTextContent[previousTextContentMaxSize]; m_model.text(this, previousTextContent, previousTextContentMaxSize, symbol()); setContent(previousTextContent, context); // Handle parametric function switch if (currentPlotType == PlotType::Parametric) { Expression e = expressionClone(); // Change [x(t) y(t)] to y(t) if (!e.isUninitialized() && e.type() == ExpressionNode::Type::Matrix && static_cast(e).numberOfRows() == 2 && static_cast(e).numberOfColumns() == 1) { Expression nextContent = e.childAtIndex(1); /* We need to detach it, otherwise nextContent will think it has a parent * when we retrieve it from the storage. */ nextContent.detachFromParent(); setExpressionContent(nextContent); } return; } else if (newPlotType == PlotType::Parametric) { Expression e = expressionClone(); // Change y(t) to [t y(t)] Matrix newExpr = Matrix::Builder(); newExpr.addChildAtIndexInPlace(Symbol::Builder(UCodePointUnknown), 0, 0); // if y(t) was not uninitialized, insert [t 2t] to set an example e = e.isUninitialized() ? Multiplication::Builder(Rational::Builder(2), Symbol::Builder(UCodePointUnknown)) : e; newExpr.addChildAtIndexInPlace(e, newExpr.numberOfChildren(), newExpr.numberOfChildren()); newExpr.setDimensions(2, 1); setExpressionContent(newExpr); } } I18n::Message ContinuousFunction::ParameterMessageForPlotType(PlotType plotType) { if (plotType == PlotType::Cartesian) { return I18n::Message::X; } if (plotType == PlotType::Polar) { return I18n::Message::Theta; } assert(plotType == PlotType::Parametric); return I18n::Message::T; } template Poincare::Coordinate2D ContinuousFunction::privateEvaluateXYAtParameter(T t, Poincare::Context * context) const { Coordinate2D x1x2 = templatedApproximateAtParameter(t, context); PlotType type = plotType(); if (type == PlotType::Cartesian || type == PlotType::Parametric) { return x1x2; } assert(type == PlotType::Polar); T factor = (T)1.0; Preferences::AngleUnit angleUnit = Preferences::sharedPreferences()->angleUnit(); if (angleUnit == Preferences::AngleUnit::Degree) { factor = (T) (M_PI/180.0); } else if (angleUnit == Preferences::AngleUnit::Gradian) { factor = (T) (M_PI/200.0); } else { assert(angleUnit == Preferences::AngleUnit::Radian); } const float angle = x1x2.x1()*factor; return Coordinate2D(x1x2.x2() * std::cos(angle), x1x2.x2() * std::sin(angle)); } bool ContinuousFunction::displayDerivative() const { return recordData()->displayDerivative(); } void ContinuousFunction::setDisplayDerivative(bool display) { return recordData()->setDisplayDerivative(display); } int ContinuousFunction::printValue(double cursorT, double cursorX, double cursorY, char * buffer, int bufferSize, int precision, Poincare::Context * context) { PlotType type = plotType(); if (type == PlotType::Cartesian) { return Function::printValue(cursorT, cursorX, cursorY, buffer, bufferSize, precision, context); } if (type == PlotType::Polar) { return PoincareHelpers::ConvertFloatToText(evaluate2DAtParameter(cursorT, context).x2(), buffer, bufferSize, precision); } assert(type == PlotType::Parametric); int result = 0; result += UTF8Decoder::CodePointToChars('(', buffer+result, bufferSize-result); result += PoincareHelpers::ConvertFloatToText(cursorX, buffer+result, bufferSize-result, precision); result += UTF8Decoder::CodePointToChars(';', buffer+result, bufferSize-result); result += PoincareHelpers::ConvertFloatToText(cursorY, buffer+result, bufferSize-result, precision); result += UTF8Decoder::CodePointToChars(')', buffer+result, bufferSize-result); return result; } double ContinuousFunction::approximateDerivative(double x, Poincare::Context * context) const { assert(plotType() == PlotType::Cartesian); if (x < tMin() || x > tMax()) { return NAN; } Poincare::Derivative derivative = Poincare::Derivative::Builder(expressionReduced(context).clone(), Symbol::Builder(UCodePointUnknown), Poincare::Float::Builder(x)); // derivative takes ownership of Poincare::Float::Builder(x) and the clone of expression /* TODO: when we approximate derivative, we might want to simplify the * derivative here. However, we might want to do it once for all x (to avoid * lagging in the derivative table. */ return PoincareHelpers::ApproximateToScalar(derivative, context); } float ContinuousFunction::tMin() const { return recordData()->tMin(); } float ContinuousFunction::tMax() const { return recordData()->tMax(); } void ContinuousFunction::setTMin(float tMin) { recordData()->setTMin(tMin); setCache(nullptr); } void ContinuousFunction::setTMax(float tMax) { recordData()->setTMax(tMax); setCache(nullptr); } void ContinuousFunction::rangeForDisplay(float * xMin, float * xMax, float * yMin, float * yMax, float targetRatio, Poincare::Context * context) const { if (plotType() != PlotType::Cartesian) { assert(std::isfinite(tMin()) && std::isfinite(tMax()) && std::isfinite(rangeStep()) && rangeStep() > 0); protectedFullRangeForDisplay(tMin(), tMax(), rangeStep(), xMin, xMax, context, true); protectedFullRangeForDisplay(tMin(), tMax(), rangeStep(), yMin, yMax, context, false); return; } if (!basedOnCostlyAlgorithms(context)) { Zoom::ValueAtAbscissa evaluation = [](float x, Context * context, const void * auxiliary) -> float { /* When evaluating sin(x)/x close to zero using the standard sine function, * one can detect small variations, while the cardinal sine is supposed to be * locally monotonous. To smooth our such variations, we round the result of * the evaluations. As we are not interested in precise results but only in * ordering, this approximation is sufficient. */ constexpr float precision = 1e-5; return precision * std::round(static_cast(auxiliary)->evaluateXYAtParameter(x, context).x2() / precision); }; bool fullyComputed = Zoom::InterestingRangesForDisplay(evaluation, xMin, xMax, yMin, yMax, tMin(), tMax(), context, this); evaluation = [](float x, Context * context, const void * auxiliary) { return static_cast(auxiliary)->evaluateXYAtParameter(x, context).x2(); }; if (fullyComputed) { /* The function has points of interest. */ Zoom::RefinedYRangeForDisplay(evaluation, xMin, xMax, yMin, yMax, context, this); return; } /* Try to display an orthonormal range. */ Zoom::RangeWithRatioForDisplay(evaluation, targetRatio, xMin, xMax, yMin, yMax, context, this); if (std::isfinite(*xMin) && std::isfinite(*xMax) && std::isfinite(*yMin) && std::isfinite(*yMax)) { return; } /* The function's profile is not great for an orthonormal range. * Try a basic range. */ *xMin = - Zoom::k_defaultHalfRange; *xMax = Zoom::k_defaultHalfRange; Zoom::RefinedYRangeForDisplay(evaluation, xMin, xMax, yMin, yMax, context, this); if (std::isfinite(*xMin) && std::isfinite(*xMax) && std::isfinite(*yMin) && std::isfinite(*yMax)) { return; } /* The function's order of magnitude cannot be computed. Try to just display * the full function. */ float step = (*xMax - *xMin) / k_polarParamRangeSearchNumberOfPoints; Zoom::FullRange(evaluation, *xMin, *xMax, step, yMin, yMax, context, this); if (std::isfinite(*xMin) && std::isfinite(*xMax) && std::isfinite(*yMin) && std::isfinite(*yMax)) { return; } } /* The function makes use of some costly algorithms and cannot be computed in * a timely manner, or it is probably undefined. */ *xMin = NAN; *xMax = NAN; *yMin = NAN; *yMax = NAN; } void * ContinuousFunction::Model::expressionAddress(const Ion::Storage::Record * record) const { return (char *)record->value().buffer+sizeof(RecordDataBuffer); } size_t ContinuousFunction::Model::expressionSize(const Ion::Storage::Record * record) const { return record->value().size-sizeof(RecordDataBuffer); } ContinuousFunction::RecordDataBuffer * ContinuousFunction::recordData() const { assert(!isNull()); Ion::Storage::Record::Data d = value(); return reinterpret_cast(const_cast(d.buffer)); } template Coordinate2D ContinuousFunction::templatedApproximateAtParameter(T t, Poincare::Context * context) const { if (t < tMin() || t > tMax()) { return Coordinate2D(plotType() == PlotType::Cartesian ? t : NAN, NAN); } constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1; char unknown[bufferSize]; Poincare::SerializationHelper::CodePoint(unknown, bufferSize, UCodePointUnknown); PlotType type = plotType(); Expression e = expressionReduced(context); if (type != PlotType::Parametric) { assert(type == PlotType::Cartesian || type == PlotType::Polar); return Coordinate2D(t, PoincareHelpers::ApproximateWithValueForSymbol(e, unknown, t, context)); } assert(e.type() == ExpressionNode::Type::Matrix); assert(static_cast(e).numberOfRows() == 2); assert(static_cast(e).numberOfColumns() == 1); return Coordinate2D( PoincareHelpers::ApproximateWithValueForSymbol(e.childAtIndex(0), unknown, t, context), PoincareHelpers::ApproximateWithValueForSymbol(e.childAtIndex(1), unknown, t, context)); } Coordinate2D ContinuousFunction::nextMinimumFrom(double start, double step, double max, Context * context) const { return nextPointOfInterestFrom(start, step, max, context, [](Expression e, char * symbol, double start, double step, double max, Context * context) { return PoincareHelpers::NextMinimum(e, symbol, start, step, max, context); }); } Coordinate2D ContinuousFunction::nextMaximumFrom(double start, double step, double max, Context * context) const { return nextPointOfInterestFrom(start, step, max, context, [](Expression e, char * symbol, double start, double step, double max, Context * context) { return PoincareHelpers::NextMaximum(e, symbol, start, step, max, context); }); } Coordinate2D ContinuousFunction::nextRootFrom(double start, double step, double max, Context * context) const { return nextPointOfInterestFrom(start, step, max, context, [](Expression e, char * symbol, double start, double step, double max, Context * context) { return Coordinate2D(PoincareHelpers::NextRoot(e, symbol, start, step, max, context), 0.0); }); } Coordinate2D ContinuousFunction::nextIntersectionFrom(double start, double step, double max, Poincare::Context * context, Poincare::Expression e, double eDomainMin, double eDomainMax) const { assert(plotType() == PlotType::Cartesian); constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1; char unknownX[bufferSize]; SerializationHelper::CodePoint(unknownX, bufferSize, UCodePointUnknown); double domainMin = std::max(tMin(), eDomainMin); double domainMax = std::min(tMax(), eDomainMax); if (step > 0.0f) { start = std::max(start, domainMin); max = std::min(max, domainMax); } else { start = std::min(start, domainMax); max = std::max(max, domainMin); } return PoincareHelpers::NextIntersection(expressionReduced(context), unknownX, start, step, max, context, e); } Coordinate2D ContinuousFunction::nextPointOfInterestFrom(double start, double step, double max, Context * context, ComputePointOfInterest compute) const { assert(plotType() == PlotType::Cartesian); constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1; char unknownX[bufferSize]; SerializationHelper::CodePoint(unknownX, bufferSize, UCodePointUnknown); if (step > 0.0f) { start = std::max(start, tMin()); max = std::min(max, tMax()); } else { start = std::min(start, tMax()); max = std::max(max, tMin()); } return compute(expressionReduced(context), unknownX, start, step, max, context); } Poincare::Expression ContinuousFunction::sumBetweenBounds(double start, double end, Poincare::Context * context) const { assert(plotType() == PlotType::Cartesian); start = std::max(start, tMin()); end = std::min(end, tMax()); return Poincare::Integral::Builder(expressionReduced(context).clone(), Poincare::Symbol::Builder(UCodePointUnknown), Poincare::Float::Builder(start), Poincare::Float::Builder(end)); // Integral takes ownership of args /* TODO: when we approximate integral, we might want to simplify the integral * here. However, we might want to do it once for all x (to avoid lagging in * the derivative table. */ } Ion::Storage::Record::ErrorStatus ContinuousFunction::setContent(const char * c, Poincare::Context * context) { setCache(nullptr); return ExpressionModelHandle::setContent(c, context); } bool ContinuousFunction::basedOnCostlyAlgorithms(Context * context) const { return expressionReduced(context).hasExpression([](const Expression e, const void * context) { return e.type() == ExpressionNode::Type::Sequence || e.type() == ExpressionNode::Type::Integral || e.type() == ExpressionNode::Type::Derivative; }, nullptr); } template Coordinate2D ContinuousFunction::templatedApproximateAtParameter(float, Poincare::Context *) const; template Coordinate2D ContinuousFunction::templatedApproximateAtParameter(double, Poincare::Context *) const; template Poincare::Coordinate2D ContinuousFunction::privateEvaluateXYAtParameter(float, Poincare::Context *) const; template Poincare::Coordinate2D ContinuousFunction::privateEvaluateXYAtParameter(double, Poincare::Context *) const; }