#include "sequence.h" #include "cache_context.h" #include "sequence_store.h" #include #include #include #include #include #include #include "../shared/poincare_helpers.h" #include #include #include using namespace Shared; using namespace Poincare; namespace Sequence { I18n::Message Sequence::parameterMessageName() const { return I18n::Message::N; } void Sequence::tidy() { m_definition.tidyName(); Function::tidy(); // m_definitionName.tidy() m_firstInitialCondition.tidy(); m_firstInitialCondition.tidyName(); m_secondInitialCondition.tidy(); m_secondInitialCondition.tidyName(); m_nameLayout = Layout(); } Sequence::Type Sequence::type() const { return recordData()->type(); } int Sequence::initialRank() const { return recordData()->initialRank(); } void Sequence::setType(Type t) { if (t == type()) { return; } if (type() == Type::Explicit) { setInitialRank(0); } recordData()->setType(t); tidy(); /* Reset all contents */ switch (t) { case Type::Explicit: setContent(""); break; case Type::SingleRecurrence: { char ex[5] = "u(n)"; ex[0] = fullName()[0]; setContent(ex); break; } case Type::DoubleRecurrence: { char ex[12] = "u(n+1)+u(n)"; char name = fullName()[0]; ex[0] = name; ex[7] = name; setContent(ex); break; } } setFirstInitialConditionContent(""); setSecondInitialConditionContent(""); } void Sequence::setInitialRank(int rank) { recordData()->setInitialRank(rank); m_firstInitialCondition.tidyName(); m_secondInitialCondition.tidyName(); } Poincare::Layout Sequence::nameLayout() { if (m_nameLayout.isUninitialized()) { m_nameLayout = HorizontalLayout::Builder( CodePointLayout::Builder(fullName()[0], KDFont::SmallFont), VerticalOffsetLayout::Builder(CodePointLayout::Builder(symbol(), KDFont::SmallFont), VerticalOffsetLayoutNode::Position::Subscript) ); } return m_nameLayout; } bool Sequence::isDefined() { RecordDataBuffer * data = recordData(); switch (type()) { case Type::Explicit: return value().size > metaDataSize(); case Type::SingleRecurrence: return data->initialConditionSize(0) > 0 && value().size > metaDataSize() + data->initialConditionSize(0); default: return data->initialConditionSize(0) > 0 && data->initialConditionSize(1) > 0 && value().size > metaDataSize() + data->initialConditionSize(0) + data->initialConditionSize(1); } } bool Sequence::isEmpty() { RecordDataBuffer * data = recordData(); Type type = data->type(); return Function::isEmpty() && (type == Type::Explicit || (data->initialConditionSize(0) == 0 && (type == Type::SingleRecurrence || data->initialConditionSize(1) == 0))); } template T Sequence::templatedApproximateAtAbscissa(T x, SequenceContext * sqctx) const { T n = std::round(x); int sequenceIndex = SequenceStore::sequenceIndexForName(fullName()[0]); if (sqctx->iterateUntilRank(n)) { return sqctx->valueOfSequenceAtPreviousRank(sequenceIndex, 0); } return NAN; } template T Sequence::approximateToNextRank(int n, SequenceContext * sqctx) const { if (n < initialRank() || n < 0) { return NAN; } constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1; char unknownN[bufferSize]; Poincare::SerializationHelper::CodePoint(unknownN, bufferSize, UCodePointUnknownX); CacheContext ctx = CacheContext(sqctx); // Hold values u(n), u(n-1), u(n-2), v(n), v(n-1), v(n-2)... T values[MaxNumberOfSequences][MaxRecurrenceDepth+1]; for (int i = 0; i < MaxNumberOfSequences; i++) { for (int j = 0; j < MaxRecurrenceDepth+1; j++) { values[i][j] = sqctx->valueOfSequenceAtPreviousRank(i, j); } } // Hold symbols u(n), u(n+1), v(n), v(n+1), w(n), w(n+1) Poincare::Symbol symbols[MaxNumberOfSequences][MaxRecurrenceDepth]; char name[MaxRecurrenceDepth][7] = {"0(n)","0(n+1)"}; for (int i = 0; i < MaxNumberOfSequences; i++) { for (int j = 0; j < MaxRecurrenceDepth; j++) { name[j][0] = SequenceStore::k_sequenceNames[i][0]; symbols[i][j] = Symbol::Builder(name[j], strlen(name[j])); } } switch (type()) { case Type::Explicit: { for (int i = 0; i < MaxNumberOfSequences; i++) { // Set in context u(n) = u(n) for all sequences ctx.setValueForSymbol(values[i][0], symbols[i][0]); } return PoincareHelpers::ApproximateWithValueForSymbol(expressionReduced(sqctx), unknownN, (T)n, &ctx); } case Type::SingleRecurrence: { if (n == initialRank()) { return PoincareHelpers::ApproximateToScalar(firstInitialConditionExpressionReduced(sqctx), sqctx); } for (int i = 0; i < MaxNumberOfSequences; i++) { // Set in context u(n) = u(n-1) and u(n+1) = u(n) for all sequences ctx.setValueForSymbol(values[i][0], symbols[i][1]); ctx.setValueForSymbol(values[i][1], symbols[i][0]); } return PoincareHelpers::ApproximateWithValueForSymbol(expressionReduced(sqctx), unknownN, (T)(n-1), &ctx); } default: { if (n == initialRank()) { return PoincareHelpers::ApproximateToScalar(firstInitialConditionExpressionReduced(sqctx), sqctx); } if (n == initialRank()+1) { return PoincareHelpers::ApproximateToScalar(secondInitialConditionExpressionReduced(sqctx), sqctx); } for (int i = 0; i < MaxNumberOfSequences; i++) { // Set in context u(n) = u(n-2) and u(n+1) = u(n-1) for all sequences ctx.setValueForSymbol(values[i][1], symbols[i][1]); ctx.setValueForSymbol(values[i][2], symbols[i][0]); } return PoincareHelpers::ApproximateWithValueForSymbol(expressionReduced(sqctx), unknownN, (T)(n-2), &ctx); } } } Expression Sequence::sumBetweenBounds(double start, double end, Poincare::Context * context) const { assert(std::round(start) == start && std::round(end) == end); return Poincare::Sum::Builder(expressionReduced(context).clone(), Poincare::Symbol::Builder(UCodePointUnknownX), Poincare::Float::Builder(start), Poincare::Float::Builder(end)); // Sum takes ownership of args } Sequence::RecordDataBuffer * Sequence::recordData() const { assert(!isNull()); Ion::Storage::Record::Data d = value(); return reinterpret_cast(const_cast(d.buffer)); } /* Sequence Model */ Poincare::Layout Sequence::SequenceModel::name(Sequence * sequence) { if (m_name.isUninitialized()) { buildName(sequence); } return m_name; } void Sequence::SequenceModel::updateNewDataWithExpression(Ion::Storage::Record * record, const Expression & expressionToStore, void * expressionAddress, size_t newExpressionSize, size_t previousExpressionSize) { Ion::Storage::Record::Data newData = record->value(); // Translate expressions located downstream size_t sizeBeforeExpression = (char *)expressionAddress -(char *)newData.buffer; size_t remainingSize = newData.size - sizeBeforeExpression - previousExpressionSize; memmove((char *)expressionAddress + newExpressionSize, (char *)expressionAddress + previousExpressionSize, remainingSize); // Copy the expression if (!expressionToStore.isUninitialized()) { memmove(expressionAddress, expressionToStore.addressInPool(), newExpressionSize); } // Update meta data updateMetaData(record, newExpressionSize); } /* Definition Handle*/ void * Sequence::DefinitionModel::expressionAddress(const Ion::Storage::Record * record) const { return (char *)record->value().buffer+sizeof(RecordDataBuffer); } size_t Sequence::DefinitionModel::expressionSize(const Ion::Storage::Record * record) const { Ion::Storage::Record::Data data = record->value(); RecordDataBuffer * dataBuffer = static_cast(record)->recordData(); return data.size-sizeof(RecordDataBuffer) - dataBuffer->initialConditionSize(0) - dataBuffer->initialConditionSize(1); } void Sequence::DefinitionModel::buildName(Sequence * sequence) { char name = sequence->fullName()[0]; if (sequence->type() == Type::Explicit) { m_name = HorizontalLayout::Builder( CodePointLayout::Builder(name, k_layoutFont), VerticalOffsetLayout::Builder(LayoutHelper::String("n", 1, k_layoutFont), VerticalOffsetLayoutNode::Position::Subscript)); } else if (sequence->type() == Type::SingleRecurrence) { m_name = HorizontalLayout::Builder( CodePointLayout::Builder(name, k_layoutFont), VerticalOffsetLayout::Builder(LayoutHelper::String("n+1", 3, k_layoutFont), VerticalOffsetLayoutNode::Position::Subscript)); } else { assert(sequence->type() == Type::DoubleRecurrence); m_name = HorizontalLayout::Builder( CodePointLayout::Builder(name, k_layoutFont), VerticalOffsetLayout::Builder(LayoutHelper::String("n+2", 3, k_layoutFont), VerticalOffsetLayoutNode::Position::Subscript)); } } /* Initial Condition Handle*/ void * Sequence::InitialConditionModel::expressionAddress(const Ion::Storage::Record * record) const { Ion::Storage::Record::Data data = record->value(); RecordDataBuffer * dataBuffer = static_cast(record)->recordData(); size_t offset = conditionIndex() == 0 ? data.size - dataBuffer->initialConditionSize(0) - dataBuffer->initialConditionSize(1) : data.size - dataBuffer->initialConditionSize(1) ; return (char *)data.buffer+offset; } size_t Sequence::InitialConditionModel::expressionSize(const Ion::Storage::Record * record) const { return static_cast(record)->recordData()->initialConditionSize(conditionIndex()); } void Sequence::InitialConditionModel::updateMetaData(const Ion::Storage::Record * record, size_t newSize) { static_cast(record)->recordData()->setInitialConditionSize(newSize, conditionIndex()); } void Sequence::InitialConditionModel::buildName(Sequence * sequence) { assert((conditionIndex() == 0 && sequence->type() == Type::SingleRecurrence) || sequence->type() == Type::DoubleRecurrence); char buffer[k_initialRankNumberOfDigits+1]; Integer(sequence->initialRank()+conditionIndex()).serialize(buffer, k_initialRankNumberOfDigits+1); Layout indexLayout = LayoutHelper::String(buffer, strlen(buffer), k_layoutFont); m_name = HorizontalLayout::Builder( CodePointLayout::Builder(sequence->fullName()[0], k_layoutFont), VerticalOffsetLayout::Builder(indexLayout, VerticalOffsetLayoutNode::Position::Subscript)); } template double Sequence::templatedApproximateAtAbscissa(double, SequenceContext*) const; template float Sequence::templatedApproximateAtAbscissa(float, SequenceContext*) const; template double Sequence::approximateToNextRank(int, SequenceContext*) const; template float Sequence::approximateToNextRank(int, SequenceContext*) const; }