extern "C" { #include "modpyplot.h" } #include #include #include "port.h" #include "plot_controller.h" Matplotlib::PlotStore * sPlotStore = nullptr; Matplotlib::PlotController * sPlotController = nullptr; static int paletteIndex = 0; // Private helper static size_t extractAndValidatePlotInput(mp_obj_t x, mp_obj_t y, mp_obj_t ** xItems, mp_obj_t ** yItems) { // Input parameter validation size_t xLength, yLength; mp_obj_get_array(x, &xLength, xItems); mp_obj_get_array(y, &yLength, yItems); if (xLength != yLength) { mp_raise_ValueError("x and y must have same dimension"); } return xLength; } // Internal functions mp_obj_t modpyplot___init__() { static Matplotlib::PlotStore plotStore; static Matplotlib::PlotController plotController(&plotStore); sPlotStore = &plotStore; sPlotController = &plotController; sPlotStore->flush(); paletteIndex = 0; return mp_const_none; } void modpyplot_gc_collect() { if (sPlotStore == nullptr) { return; } MicroPython::collectRootsAtAddress( reinterpret_cast(sPlotStore), sizeof(Matplotlib::PlotStore) ); } mp_obj_t modpyplot_arrow(size_t n_args, const mp_obj_t *args) { assert(n_args == 4); assert(sPlotStore != nullptr); KDColor color = Palette::nextDataColor(&paletteIndex); sPlotStore->addSegment(args[0], args[1], mp_obj_new_float(mp_obj_get_float(args[0])+mp_obj_get_float(args[2])), mp_obj_new_float(mp_obj_get_float(args[1])+mp_obj_get_float(args[3])), color, true); return mp_const_none; } /* axis(arg) * - arg = "on", "off", "auto" * - arg = True, False * - arg = [xmin, xmax, ymin, ymax], (xmin, xmax, ymin, ymax) * Returns : (xmin, xmax, ymin, ymax) : float */ mp_obj_t modpyplot_axis(size_t n_args, const mp_obj_t *args) { assert(sPlotStore != nullptr); if (n_args == 1) { mp_obj_t arg = args[0]; if (mp_obj_is_str(arg)) { if (mp_obj_str_equal(arg, mp_obj_new_str("on", 2))) { sPlotStore->setAxesRequested(true); } else if (mp_obj_str_equal(arg, mp_obj_new_str("off", 3))) { sPlotStore->setAxesRequested(false); } else if (mp_obj_str_equal(arg, mp_obj_new_str("auto", 4))) { sPlotStore->setAxesRequested(true); sPlotStore->setAxesAuto(true); } else { mp_raise_ValueError("Unrecognized string given to axis; try 'on', 'off' or 'auto'"); } #warning Use mp_obj_is_bool when upgrading uPy } else if (mp_obj_is_type(arg, &mp_type_bool)) { sPlotStore->setAxesRequested(mp_obj_is_true(arg)); } else if (mp_obj_is_type(arg, &mp_type_tuple) || mp_obj_is_type(arg, &mp_type_list)) { mp_obj_t * items; mp_obj_get_array_fixed_n(arg, 4, &items); sPlotStore->setXMin(mp_obj_get_float(items[0])); sPlotStore->setXMax(mp_obj_get_float(items[1])); sPlotStore->setYMin(mp_obj_get_float(items[2])); sPlotStore->setYMax(mp_obj_get_float(items[3])); sPlotStore->setAxesAuto(false); } else { mp_raise_TypeError("the first argument to axis() must be an interable of the form [xmin, xmax, ymin, ymax]"); } } // Build the return value mp_obj_t coords[4]; coords[0] = mp_obj_new_float(sPlotStore->xMin()); coords[1] = mp_obj_new_float(sPlotStore->xMax()); coords[2] = mp_obj_new_float(sPlotStore->yMin()); coords[3] = mp_obj_new_float(sPlotStore->yMax()); return mp_obj_new_tuple(4, coords); } /* bar(x, height, width, bottom) * 'height', 'width' and 'bottom' can either be a scalar or an array/tuple of * scalar. * 'width' default value is 0.8 * 'bottom' default value is None * */ // TODO: accept keyword args? void extract_argument(mp_obj_t arg, size_t length, mp_obj_t ** items, float * item) { if (mp_obj_is_type(arg, &mp_type_tuple) || mp_obj_is_type(arg, &mp_type_list)) { size_t itemLength; mp_obj_get_array(arg, &itemLength, items); if (itemLength != length) { mp_raise_ValueError("Shape mismatch"); } } else { *item = mp_obj_get_float(arg); } } mp_obj_t modpyplot_bar(size_t n_args, const mp_obj_t *args) { assert(sPlotStore != nullptr); mp_obj_t * xItems; mp_obj_t * hItems = nullptr; float h; mp_obj_t * wItems = nullptr; float w = 0.8f; mp_obj_t * bItems = nullptr; float b = 0.0f; // x arg size_t xLength; mp_obj_get_array(args[0], &xLength, &xItems); // height arg extract_argument(args[1], xLength, &hItems, &h); // width arg if (n_args >= 3) { extract_argument(args[2], xLength, &wItems, &w); } // bottom arg if (n_args >= 4) { extract_argument(args[3], xLength, &bItems, &b); } KDColor color = Palette::nextDataColor(&paletteIndex); for (size_t i=0; iaddRect(mp_obj_new_float(iX), mp_obj_new_float(iY), mp_obj_new_float(iW), mp_obj_new_float(std::fabs(iH)), color); } return mp_const_none; } mp_obj_t modpyplot_grid(size_t n_args, const mp_obj_t *args) { assert(sPlotStore != nullptr); if (n_args == 0) { // Toggle the grid visibility sPlotStore->setGridRequested(!sPlotStore->gridRequested()); } else { sPlotStore->setGridRequested(mp_obj_is_true(args[0])); } return mp_const_none; } /* hist(x, bins) * 'x' array * 'bins': (default value 10) * - int (number of bins) * - sequence of bins * */ mp_obj_t modpyplot_hist(size_t n_args, const mp_obj_t *args) { assert(sPlotStore != nullptr); // Sort data to easily get the minimal and maximal value and count bin sizes mp_obj_t * xItems; size_t xLength; mp_obj_get_array(args[0], &xLength, &xItems); mp_obj_t xList = mp_obj_new_list(xLength, xItems); mp_obj_list_sort(1, &xList, (mp_map_t*)&mp_const_empty_map); mp_obj_list_get(xList, &xLength, &xItems); mp_float_t min = mp_obj_get_float(xItems[0]); mp_float_t max = mp_obj_get_float(xItems[xLength - 1]); mp_obj_t binsEdges; size_t nBins = 10; // bin arg if (n_args >= 2 && (mp_obj_is_type(args[1], &mp_type_tuple) || mp_obj_is_type(args[1], &mp_type_list))) { binsEdges = args[1]; } else { if (n_args >= 2) { nBins = mp_obj_get_int(args[1]); } // Create a list of bins binsEdges = mp_obj_new_list(nBins+1, nullptr); // Fill the bin edges list mp_float_t binWidth = (max-min)/nBins; for (int i = 0; i < nBins+1; i++) { mp_obj_list_store(binsEdges, mp_obj_new_int(i), mp_obj_new_float(min+i*binWidth)); } } mp_obj_t * edgeItems; size_t nEdges; mp_obj_list_get(binsEdges, &nEdges, &edgeItems); nBins = nEdges - 1; // Initialize bins list mp_obj_t bins = mp_obj_new_list(nBins, nullptr); for (size_t i=0; iaddRect(edgeItems[i], binItems[i], mp_obj_new_float(width), binItems[i], color); } return mp_const_none; } mp_obj_t modpyplot_scatter(mp_obj_t x, mp_obj_t y) { assert(sPlotStore != nullptr); // Input parameter validation mp_obj_t * xItems, * yItems; size_t length = extractAndValidatePlotInput(x, y, &xItems, &yItems); KDColor color = Palette::nextDataColor(&paletteIndex); for (size_t i=0; iaddDot(xItems[i], yItems[i], color); } return mp_const_none; } /* plot(x, y) plots the curve (x, y) * plot(y) plots the curve x as index array ([0,1,2...],y) * */ mp_obj_t modpyplot_plot(size_t n_args, const mp_obj_t *args) { assert(sPlotStore != nullptr); mp_obj_t * xItems, * yItems; size_t length; if (n_args == 1) { mp_obj_get_array(args[0], &length, &yItems); // Create the default xItems: [0, 1, 2,...] mp_obj_t x = mp_obj_new_list(length, nullptr); for (int i = 0; i < length; i++) { mp_obj_list_store(x, mp_obj_new_int(i), mp_obj_new_float((float)i)); } mp_obj_get_array(x, &length, &xItems); } else { assert(n_args == 2); length = extractAndValidatePlotInput(args[0], args[1], &xItems, &yItems); } KDColor color = Palette::nextDataColor(&paletteIndex); for (size_t i=0; iaddSegment(xItems[i], yItems[i], xItems[i+1], yItems[i+1], color, false); } return mp_const_none; } mp_obj_t modpyplot_text(mp_obj_t x, mp_obj_t y, mp_obj_t s) { assert(sPlotStore != nullptr); // Input parameter validation mp_obj_get_float(x); mp_obj_get_float(y); mp_obj_str_get_str(s); sPlotStore->addLabel(x, y, s); return mp_const_none; } mp_obj_t modpyplot_show() { MicroPython::ExecutionEnvironment * env = MicroPython::ExecutionEnvironment::currentExecutionEnvironment(); env->displayViewController(sPlotController); return mp_const_none; }