#include #include #include #include #include #include #include "../equation_store.h" #include "../../../poincare/test/helper.h" using namespace Poincare; namespace Solver { void addEquationWithText(EquationStore * equationStore, const char * text) { Ion::Storage::Record::ErrorStatus err = equationStore->addEmptyModel(); quiz_assert_print_if_failure(err == Ion::Storage::Record::ErrorStatus::None, text); (void) err; // Silence warning in DEBUG=0 Ion::Storage::Record record = equationStore->recordAtIndex(equationStore->numberOfModels()-1); Shared::ExpiringPointer model = equationStore->modelForRecord(record); model->setContent(text); } void assert_equation_system_exact_solve_to(const char * equations[], EquationStore::Error error, EquationStore::Type type, const char * variables[], const char * solutions[], int numberOfSolutions) { Shared::GlobalContext globalContext; EquationStore equationStore; int index = 0; while (equations[index] != 0) { addEquationWithText(&equationStore, equations[index++]); } EquationStore::Error err = equationStore.exactSolve(&globalContext); quiz_assert_print_if_failure(err == error, equations[0]); if (err != EquationStore::Error::NoError) { equationStore.removeAll(); return; } quiz_assert_print_if_failure(equationStore.type() == type, equations[0]); quiz_assert_print_if_failure(equationStore.numberOfSolutions() == numberOfSolutions, equations[0]); if (numberOfSolutions == INT_MAX) { equationStore.removeAll(); return; } if (type == EquationStore::Type::LinearSystem) { for (int i = 0; i < numberOfSolutions; i++) { quiz_assert_print_if_failure(strcmp(equationStore.variableAtIndex(i),variables[i]) == 0, equations[0]); } } else { quiz_assert_print_if_failure(strcmp(equationStore.variableAtIndex(0), variables[0]) == 0, equations[0]); } constexpr int bufferSize = 200; char buffer[bufferSize]; for (int i = 0; i < numberOfSolutions; i++) { equationStore.exactSolutionLayoutAtIndex(i, true).serializeForParsing(buffer, bufferSize); quiz_assert_print_if_failure(strcmp(buffer, solutions[i]) == 0, equations[0]); } equationStore.removeAll(); } void assert_equation_approximate_solve_to(const char * equations, double xMin, double xMax, const char * variable, double solutions[], int numberOfSolutions, bool hasMoreSolutions) { Shared::GlobalContext globalContext; EquationStore equationStore; addEquationWithText(&equationStore, equations); EquationStore::Error err = equationStore.exactSolve(&globalContext); quiz_assert(err == EquationStore::Error::RequireApproximateSolution); equationStore.setIntervalBound(0, xMin); equationStore.setIntervalBound(1, xMax); equationStore.approximateSolve(&globalContext); quiz_assert(equationStore.numberOfSolutions() == numberOfSolutions); quiz_assert(strcmp(equationStore.variableAtIndex(0), variable)== 0); for (int i = 0; i < numberOfSolutions; i++) { quiz_assert(std::fabs(equationStore.approximateSolutionAtIndex(i) - solutions[i]) < 1E-5); } quiz_assert(equationStore.haveMoreApproximationSolutions(&globalContext) == hasMoreSolutions); equationStore.removeAll(); } QUIZ_CASE(equation_solve) { // x+y+z+a+b+c+d = 0 const char * variables1[] = {""}; const char * equations0[] = {"x+y+z+a+b+c+d=0", 0}; assert_equation_system_exact_solve_to(equations0, EquationStore::Error::TooManyVariables, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0); // x^2+y = 0 const char * equations1[] = {"x^2+y=0", 0}; assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NonLinearSystem, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0); // cos(x) = 0 const char * equations2[] = {"cos(x)=0", 0}; assert_equation_system_exact_solve_to(equations2, EquationStore::Error::RequireApproximateSolution, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0); // 2 = 0 const char * equations3[] = {"2=0", 0}; assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0); // 0 = 0 const char * equations4[] = {"0=0", 0}; assert_equation_system_exact_solve_to(equations4, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, INT_MAX); // x-x+2 = 0 const char * equations5[] = {"x-x+2=0", 0}; assert_equation_system_exact_solve_to(equations5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0); // x-x= 0 const char * equations6[] = {"x-x=0", 0}; assert_equation_system_exact_solve_to(equations6, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, INT_MAX); const char * variablesx[] = {"x", ""}; // 2x+3=4 const char * equations7[] = {"2x+3=4", 0}; const char * solutions7[] = {"\u0012\u00121\u0013/\u00122\u0013\u0013"}; // 1/2 assert_equation_system_exact_solve_to(equations7, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions7, 1); // 3x^2-4x+4=2 const char * equations8[] = {"3ร—x^2-4x+4=2", 0}; const char * solutions8[] = {"\u0012\u00122\u0013/\u00123\u0013\u0013-\u0012\u0012โˆš\u00122\u0013\u0013/\u00123\u0013\u0013๐ข","\u0012\u00122\u0013/\u00123\u0013\u0013+\u0012\u0012โˆš\u00122\u0013\u0013/\u00123\u0013\u0013๐ข", "-8"}; // 2/3-(โˆš(2)/3)๐ข, 2/3+(โˆš(2)/3)๐ข assert_equation_system_exact_solve_to(equations8, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions8, 3); // 2ร—x^2-4ร—x+4=3 const char * equations9[] = {"2ร—x^2-4ร—x+4=3", 0}; const char * solutions9[] = {"\u0012\u0012-โˆš\u00122\u0013+2\u0013/\u00122\u0013\u0013","\u0012\u0012โˆš\u00122\u0013+2\u0013/\u00122\u0013\u0013", "8"}; // (-โˆš(2)+2)/2, (โˆš(2)+2)/2, 8 assert_equation_system_exact_solve_to(equations9, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions9, 3); // 2ร—x^2-4ร—x+2=0 const char * equations10[] = {"2ร—x^2-4ร—x+2=0", 0}; const char * solutions10[] = {"1", "0"}; assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions10, 2); // x^2+x+1=3ร—x^2+piร—x-โˆš(5) const char * equations11[] = {"x^2+x+1=3ร—x^2+ฯ€ร—x-โˆš(5)", 0}; const char * solutions11[] = {"\u0012\u0012โˆš\u0012ฯ€^\u00122\u0013-2ฯ€+8โˆš\u00125\u0013+9\u0013-ฯ€+1\u0013/\u00124\u0013\u0013", "\u0012\u0012-โˆš\u0012ฯ€^\u00122\u0013-2ฯ€+8โˆš\u00125\u0013+9\u0013-ฯ€+1\u0013/\u00124\u0013\u0013", "ฯ€^\u00122\u0013-2ฯ€+8โˆš\u00125\u0013+9"}; // (โˆš(ฯ€^2-2ฯ€+8โˆš(5)+9)-ฯ€+1)/4, (-โˆš(ฯ€^2-2ฯ€+8ร—โˆš(5)+9)-ฯ€+1)/4, ฯ€^2-2ฯ€+8โˆš(5)+9 assert_equation_system_exact_solve_to(equations11, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions11, 3); // TODO // x^3 - 4x^2 + 6x - 24 = 0 //const char * equations10[] = {"2ร—x^2-4ร—x+4=3", 0}; //assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, {"x", ""}, {"4", "๐ขร—โˆš(6)", "-๐ขร—โˆš(6)", "-11616"}, 4); //x^3+x^2+1=0 // x^3-3x-2=0 // Linear System const char * equations12[] = {"x+y=0", 0}; assert_equation_system_exact_solve_to(equations12, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, nullptr, INT_MAX); const char * variablesxy[] = {"x", "y", ""}; const char * equations13[] = {"x+y=0", "3x+y=-5", 0}; const char * solutions13[] = {"-\u0012\u00125\u0013/\u00122\u0013\u0013", "\u0012\u00125\u0013/\u00122\u0013\u0013"}; // -5/2; 5/2 assert_equation_system_exact_solve_to(equations13, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesxy, solutions13, 2); const char * variablesxyz[] = {"x", "y", "z", ""}; const char * equations14[] = {"x+y=0", "3x+y+z=-5", "4z-ฯ€=0", 0}; const char * solutions14[] = {"\u0012\u0012-ฯ€-20\u0013/\u00128\u0013\u0013", "\u0012\u0012ฯ€+20\u0013/\u00128\u0013\u0013", "\u0012\u0012ฯ€\u0013/\u00124\u0013\u0013"}; // (-ฯ€-20)/8, (ฯ€+20)/8, ฯ€/4 assert_equation_system_exact_solve_to(equations14, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesxyz, solutions14, 3); // Monovariable non-polynomial equation double solutions15[] = {-90.0, 90.0}; assert_equation_approximate_solve_to("cos(x)=0", -100.0, 100.0, "x", solutions15, 2, false); double solutions16[] = {-810.0, -630.0, -450.0, -270.0, -90.0, 90.0, 270.0, 450.0, 630.0, 810.0}; assert_equation_approximate_solve_to("cos(x)=0", -900.0, 1000.0, "x", solutions16, 10, true); double solutions17[] = {0}; assert_equation_approximate_solve_to("โˆš(y)=0", -900.0, 1000.0, "y", solutions17, 1, false); // Long variable names const char * variablesabcde[] = {"abcde", ""}; const char * equations18[] = {"2abcde+3=4", 0}; const char * solutions18[] = {"\u0012\u00121\u0013/\u00122\u0013\u0013"}; // 1/2 assert_equation_system_exact_solve_to(equations18, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesabcde, solutions18, 1); const char * variablesBig1Big2[] = {"Big1", "Big2", ""}; const char * equations19[] = {"Big1+Big2=0", "3Big1+Big2=-5", 0}; const char * solutions19[] = {"-\u0012\u00125\u0013/\u00122\u0013\u0013", "\u0012\u00125\u0013/\u00122\u0013\u0013"}; // -5/2, 5/2 assert_equation_system_exact_solve_to(equations19, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesBig1Big2, solutions19, 2); // conj(x)*x+1 = 0 const char * equations20one = "conj(x)*x+1=0"; const char * equations20[] = {equations20one, 0}; assert_equation_system_exact_solve_to(equations20, EquationStore::Error::RequireApproximateSolution, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0); assert_equation_approximate_solve_to(equations20one, -100.0, 100.0, "x", nullptr, 0, false); } QUIZ_CASE(equation_solve_complex_format) { Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Real); const char * variablesx[] = {"x", ""}; // x+I = 0 --> x = -๐ข const char * equations0[] = {"x+๐ข=0", 0}; const char * solutions0[] = {"-๐ข"}; assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1); // x+โˆš(-1) = 0 --> Not defined in R const char * equations1[] = {"x+โˆš(-1)=0", 0}; assert_equation_system_exact_solve_to(equations1, EquationStore::Error::EquationUnreal, EquationStore::Type::LinearSystem, (const char **)variablesx, nullptr, 0); // x^2+x+1=0 --> No solution in R const char * equations2[] = {"x^2+x+1=0", 0}; const char * delta2[] = {"-3"}; assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, delta2, 1); // x^2-โˆš(-1)=0 --> Not defined in R const char * equations3[] = {"x^2-โˆš(-1)=0", 0}; assert_equation_system_exact_solve_to(equations3, EquationStore::Error::EquationUnreal, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, nullptr, 0); // x+โˆš(-1)ร—โˆš(-1) = 0 --> Not defined in R const char * equations4[] = {"x+โˆš(-1)ร—โˆš(-1)=0", 0}; assert_equation_system_exact_solve_to(equations4, EquationStore::Error::EquationUnreal, EquationStore::Type::LinearSystem, (const char **)variablesx, nullptr, 0); Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Cartesian); // x+๐ข = 0 --> x = -๐ข assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1); // x+โˆš(-1) = 0 --> x = -๐ข assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1); // x^2+x+1=0 const char * solutions2[] = {"-\u0012\u00121\u0013/\u00122\u0013\u0013-\u0012\u0012โˆš\u00123\u0013\u0013/\u00122\u0013\u0013๐ข","-\u0012\u00121\u0013/\u00122\u0013\u0013+\u0012\u0012โˆš\u00123\u0013\u0013/\u00122\u0013\u0013๐ข", "-3"}; // -1/2-((โˆš(3))/2)๐ข, -1/2+((โˆš(3))/2)๐ข, -3 assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions2, 3); // x^2-โˆš(-1)=0 const char * solutions3[] = {"-\u0012\u0012โˆš\u00122\u0013\u0013/\u00122\u0013\u0013-\u0012\u0012โˆš\u00122\u0013\u0013/\u00122\u0013\u0013๐ข", "\u0012\u0012โˆš\u00122\u0013\u0013/\u00122\u0013\u0013+\u0012\u0012โˆš\u00122\u0013\u0013/\u00122\u0013\u0013๐ข","4๐ข"}; // -โˆš(2)/2-(โˆš(2)/2)๐ข, โˆš(2)/2+(โˆš(2)/2)๐ข, 4๐ข assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions3, 3); // x+โˆš(-1)ร—โˆš(-1) = 0 const char * solutions4[] = {"1"}; assert_equation_system_exact_solve_to(equations4, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions4, 1); Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Polar); // x+๐ข = 0 --> x = e^(-ฯ€/2ร—i) const char * solutions0Polar[] = {"โ„ฏ^\u0012-\u0012\u0012ฯ€\u0013/\u00122\u0013\u0013๐ข\u0013"}; // โ„ฏ^(-(ฯ€/2)๐ข) assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0Polar, 1); // x+โˆš(-1) = 0 --> x = e^(-ฯ€/2๐ข) assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0Polar, 1); // x^2+x+1=0 const char * solutions2Polar[] = {"โ„ฏ^\u0012-\u0012\u00122ฯ€\u0013/\u00123\u0013\u0013๐ข\u0013","โ„ฏ^\u0012\u0012\u00122ฯ€\u0013/\u00123\u0013\u0013๐ข\u0013", "3โ„ฏ^\u0012ฯ€ยท๐ข\u0013"}; // โ„ฏ^(-(2ฯ€/3)๐ข), โ„ฏ^((2ฯ€/3)๐ข), 3โ„ฏ^(ฯ€๐ข) assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions2Polar, 3); // x^2-โˆš(-1)=0 const char * solutions3Polar[] = {"โ„ฏ^\u0012-\u0012\u00123ฯ€\u0013/\u00124\u0013\u0013๐ข\u0013", "โ„ฏ^\u0012\u0012\u0012ฯ€\u0013/\u00124\u0013\u0013๐ข\u0013", "4โ„ฏ^\u0012\u0012\u0012ฯ€\u0013/\u00122\u0013\u0013๐ข\u0013"}; // โ„ฏ^(-(3ร—ฯ€/4)๐ข)"ย‰, "โ„ฏ^((ฯ€/4)๐ข)", "4โ„ฏ^((ฯ€/2)๐ข) assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions3Polar, 3); } QUIZ_CASE(equation_and_symbolic_computation) { // x+a=0 : non linear system const char * equation[] = {"x+a=0", 0}; assert_equation_system_exact_solve_to(equation, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, nullptr, nullptr, INT_MAX); // -3->a Shared::GlobalContext globalContext; Expression::ParseAndSimplify("-3โ†’a", &globalContext, Preferences::ComplexFormat::Polar, Preferences::AngleUnit::Degree); // x+a = 0 : x = 3 const char * variables[] = {"x", ""}; const char * solutions[] = {"3"}; assert_equation_system_exact_solve_to(equation, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables, solutions, 1); // Clean the storage Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy(); } }