#include #include #include #include #include #include #include "../equation_store.h" #include "../../../poincare/test/helper.h" using namespace Poincare; namespace Solver { void assert_equation_system_exact_solve_to(const char * equations[], EquationStore::Error error, EquationStore::Type type, const char * variables[], const char * solutions[], int numberOfSolutions) { char buffer[200]; Shared::GlobalContext globalContext; EquationStore equationStore; int index = 0; while (equations[index] != 0) { Shared::ExpressionModel * e = equationStore.addEmptyModel(); strlcpy(buffer, equations[index++], 200); translate_in_special_chars(buffer); e->setContent(buffer); } EquationStore::Error err = equationStore.exactSolve(&globalContext); quiz_assert(err == error); if (err != EquationStore::Error::NoError) { return; } quiz_assert(equationStore.type() == type); quiz_assert(equationStore.numberOfSolutions() == numberOfSolutions); if (numberOfSolutions == INT_MAX) { return; } if (type == EquationStore::Type::LinearSystem) { for (int i = 0; i < numberOfSolutions; i++) { quiz_assert(strcmp(equationStore.variableAtIndex(i),variables[i]) == 0); } } else { quiz_assert(strcmp(equationStore.variableAtIndex(0), variables[0]) == 0); } int n = type == EquationStore::Type::PolynomialMonovariable ? numberOfSolutions+1 : numberOfSolutions; // Check Delta for PolynomialMonovariable for (int i = 0; i < n; i++) { equationStore.exactSolutionLayoutAtIndex(i, true).serializeForParsing(buffer, 200); translate_in_ASCII_chars(buffer); quiz_assert(strcmp(buffer, solutions[i]) == 0); } } void assert_equation_approximate_solve_to(const char * equations, double xMin, double xMax, const char * variable, double solutions[], int numberOfSolutions, bool hasMoreSolutions) { char buffer[200]; Shared::GlobalContext globalContext; EquationStore equationStore; Shared::ExpressionModel * e = equationStore.addEmptyModel(); strlcpy(buffer, equations, 200); translate_in_special_chars(buffer); e->setContent(buffer); EquationStore::Error err = equationStore.exactSolve(&globalContext); quiz_assert(err == EquationStore::Error::RequireApproximateSolution); equationStore.setIntervalBound(0, xMin); equationStore.setIntervalBound(1, xMax); equationStore.approximateSolve(&globalContext); quiz_assert(equationStore.numberOfSolutions() == numberOfSolutions); quiz_assert(strcmp(equationStore.variableAtIndex(0), variable)== 0); for (int i = 0; i < numberOfSolutions; i++) { quiz_assert(std::fabs(equationStore.approximateSolutionAtIndex(i) - solutions[i]) < 1E-5); } quiz_assert(equationStore.haveMoreApproximationSolutions(&globalContext) == hasMoreSolutions); } QUIZ_CASE(equation_solve) { // x+y+z+a+b+c+d = 0 const char * variables1[] = {""}; const char * equations0[] = {"x+y+z+a+b+c+d=0", 0}; assert_equation_system_exact_solve_to(equations0, EquationStore::Error::TooManyVariables, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0); // x^2+y = 0 const char * equations1[] = {"x^2+y=0", 0}; assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NonLinearSystem, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0); // cos(x) = 0 const char * equations2[] = {"cos(x)=0", 0}; assert_equation_system_exact_solve_to(equations2, EquationStore::Error::RequireApproximateSolution, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0); // 2 = 0 const char * equations3[] = {"2=0", 0}; assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0); // 0 = 0 const char * equations4[] = {"0=0", 0}; assert_equation_system_exact_solve_to(equations4, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, INT_MAX); // x-x+2 = 0 const char * equations5[] = {"x-x+2=0", 0}; assert_equation_system_exact_solve_to(equations5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, 0); // x-x= 0 const char * equations6[] = {"x-x=0", 0}; assert_equation_system_exact_solve_to(equations6, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variables1, nullptr, INT_MAX); const char * variablesx[] = {"x", ""}; // 2x+3=4 const char * equations7[] = {"2x+3=4", 0}; const char * solutions7[] = {"(1)/(2)"}; assert_equation_system_exact_solve_to(equations7, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions7, 1); // 3x^2-4x+4=2 const char * equations8[] = {"3*x^2-4x+4=2", 0}; const char * solutions8[] = {"(2)/(3)-(R(2))/(3)*I","(2)/(3)+(R(2))/(3)*I", "-8"}; assert_equation_system_exact_solve_to(equations8, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions8, 2); // 2*x^2-4*x+4=3 const char * equations9[] = {"2*x^2-4*x+4=3", 0}; const char * solutions9[] = {"(2-R(2))/(2)","(2+R(2))/(2)", "8"}; assert_equation_system_exact_solve_to(equations9, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions9, 2); // 2*x^2-4*x+2=0 const char * equations10[] = {"2*x^2-4*x+2=0", 0}; const char * solutions10[] = {"1", "0"}; assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions10, 1); // x^2+x+1=3*x^2+pi*x-R(5) const char * equations11[] = {"x^2+x+1=3*x^2+P*x-R(5)", 0}; const char * solutions11[] = {"(1-P+R(9+8*R(5)-2*P+P$2#))/(4)", "(1-P-R(9+8*R(5)-2*P+P$2#))/(4)", "9+8*R(5)-2*P+P$2#"}; assert_equation_system_exact_solve_to(equations11, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions11, 2); // TODO // x^3 - 4x^2 + 6x - 24 = 0 //const char * equations10[] = {"2*x^2-4*x+4=3", 0}; //assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, {"x", ""}, {"4", "I*R(6)", "-I*R(6)", "-11616"}, 3); //x^3+x^2+1=0 // x^3-3x-2=0 // Linear System const char * equations12[] = {"x+y=0", 0}; assert_equation_system_exact_solve_to(equations12, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, nullptr, INT_MAX); const char * variablesxy[] = {"x", "y", ""}; const char * equations13[] = {"x+y=0", "3x+y=-5", 0}; const char * solutions13[] = {"-(5)/(2)", "(5)/(2)"}; assert_equation_system_exact_solve_to(equations13, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesxy, solutions13, 2); const char * variablesxyz[] = {"x", "y", "z", ""}; const char * equations14[] = {"x+y=0", "3x+y+z=-5", "4z-P=0", 0}; const char * solutions14[] = {"(-20-P)/(8)", "(20+P)/(8)", "(P)/(4)"}; assert_equation_system_exact_solve_to(equations14, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesxyz, solutions14, 3); // Monovariable non-polynomial equation double solutions15[] = {-90.0, 90.0}; assert_equation_approximate_solve_to("cos(x)=0", -100.0, 100.0, "x", solutions15, 2, false); double solutions16[] = {-810.0, -630.0, -450.0, -270.0, -90.0, 90.0, 270.0, 450.0, 630.0, 810.0}; assert_equation_approximate_solve_to("cos(x)=0", -900.0, 1000.0, "x", solutions16, 10, true); double solutions17[] = {0}; assert_equation_approximate_solve_to("R(y)=0", -900.0, 1000.0, "y", solutions17, 1, false); // Long variable names const char * variablesabcde[] = {"abcde", ""}; const char * equations18[] = {"2abcde+3=4", 0}; const char * solutions18[] = {"(1)/(2)"}; assert_equation_system_exact_solve_to(equations18, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesabcde, solutions18, 1); const char * variablesBig1Big2[] = {"Big1", "Big2", ""}; const char * equations19[] = {"Big1+Big2=0", "3Big1+Big2=-5", 0}; const char * solutions19[] = {"-(5)/(2)", "(5)/(2)"}; assert_equation_system_exact_solve_to(equations19, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesBig1Big2, solutions19, 2); } QUIZ_CASE(equation_solve_complex_format) { Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Real); const char * variablesx[] = {"x", ""}; // x+I = 0 --> x = -I const char * equations0[] = {"x+I=0", 0}; const char * solutions0[] = {"-I"}; assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1); // x+R(-1) = 0 --> pas de solution dans R const char * equations1[] = {"x+R(-1)=0", 0}; assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, nullptr, 0); // x^2+x+1=0 --> pas de solution dans R const char * equations2[] = {"x^2+x+1=0", 0}; const char * delta2[] = {"-3"}; assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, delta2, 0); // x^2-R(-1)=0 --> pas de solution dans R const char * equations3[] = {"x^2-R(-1)=0", 0}; const char * delta3[] = {"undef"}; assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, delta3, 0); Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Cartesian); // x+I = 0 --> x = -I assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1); // x+R(-1) = 0 --> x = -I assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0, 1); // x^2+x+1=0 const char * solutions2[] = {"-(1)/(2)-(R(3))/(2)*I","-(1)/(2)+(R(3))/(2)*I", "-3"}; assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions2, 2); // x^2-R(-1)=0 const char * solutions3[] = {"-(R(2))/(2)-(R(2))/(2)*I", "(R(2))/(2)+(R(2))/(2)*I","4*I"}; assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions3, 2); Poincare::Preferences::sharedPreferences()->setComplexFormat(Poincare::Preferences::ComplexFormat::Polar); // x+I = 0 --> x = e^(-pi/2*i) const char * solutions0Polar[] = {"X$-(P)/(2)*I#"}; assert_equation_system_exact_solve_to(equations0, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0Polar, 1); // x+R(-1) = 0 --> x = e^(-pi/2*i) assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, (const char **)variablesx, solutions0Polar, 1); // x^2+x+1=0 const char * solutions2Polar[] = {"X$-(2*P)/(3)*I#","X$(2*P)/(3)*I#", "3*X$P*I#"}; assert_equation_system_exact_solve_to(equations2, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions2Polar, 2); // x^2-R(-1)=0 const char * solutions3Polar[] = {"X$-(3*P)/(4)*I#", "X$(P)/(4)*I#", "4*X$(P)/(2)*I#"}; assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, (const char **)variablesx, solutions3Polar, 2); } }