#include #include #include #include #include #include "helper.h" using namespace Poincare; constexpr Poincare::ExpressionNode::Sign Positive = Poincare::ExpressionNode::Sign::Positive; constexpr Poincare::ExpressionNode::Sign Negative = Poincare::ExpressionNode::Sign::Negative; constexpr Poincare::ExpressionNode::Sign Unknown = Poincare::ExpressionNode::Sign::Unknown; void assert_parsed_expression_sign(const char * expression, Poincare::ExpressionNode::Sign sign, Poincare::Preferences::ComplexFormat complexFormat = Cartesian) { Shared::GlobalContext globalContext; Expression e = parse_expression(expression); quiz_assert(!e.isUninitialized()); e = e.reduce(globalContext, complexFormat, Degree); quiz_assert(e.sign(&globalContext) == sign); } QUIZ_CASE(poincare_sign) { assert_parsed_expression_sign("abs(-cos(2)+I)", Positive); assert_parsed_expression_sign("2.345E-23", Positive); assert_parsed_expression_sign("-2.345E-23", Negative); assert_parsed_expression_sign("2*(-3)*abs(-32)", Negative); assert_parsed_expression_sign("2*(-3)*abs(-32)*cos(3)", Unknown); assert_parsed_expression_sign("x", Unknown); assert_parsed_expression_sign("2^(-abs(3))", Positive); assert_parsed_expression_sign("(-2)^4", Positive); assert_parsed_expression_sign("(-2)^3", Negative); assert_parsed_expression_sign("random()", Positive); assert_parsed_expression_sign("42/3", Positive); assert_parsed_expression_sign("-23/32", Negative); assert_parsed_expression_sign("P", Positive); assert_parsed_expression_sign("X", Positive); assert_parsed_expression_sign("R(-1)", Unknown); assert_parsed_expression_sign("R(-1)", Unknown, Real); } QUIZ_CASE(poincare_polynomial_degree) { assert_parsed_expression_polynomial_degree("x+1", 1); assert_parsed_expression_polynomial_degree("cos(2)+1", 0); assert_parsed_expression_polynomial_degree("confidence(0.2,10)+1", -1); assert_parsed_expression_polynomial_degree("diff(3*x+x,x,2)", -1); assert_parsed_expression_polynomial_degree("diff(3*x+x,x,x)", -1); assert_parsed_expression_polynomial_degree("diff(3*x+x,x,x)", 0, "a"); assert_parsed_expression_polynomial_degree("(3*x+2)/3", 1); assert_parsed_expression_polynomial_degree("(3*x+2)/x", -1); assert_parsed_expression_polynomial_degree("int(2*x,x, 0, 1)", -1); assert_parsed_expression_polynomial_degree("int(2*x,x, 0, 1)", 0, "a"); assert_parsed_expression_polynomial_degree("[[1,2][3,4]]", -1); assert_parsed_expression_polynomial_degree("(x^2+2)*(x+1)", 3); assert_parsed_expression_polynomial_degree("-(x+1)", 1); assert_parsed_expression_polynomial_degree("(x^2+2)^(3)", 6); assert_parsed_expression_polynomial_degree("prediction(0.2,10)+1", -1); assert_parsed_expression_polynomial_degree("2-x-x^3", 3); assert_parsed_expression_polynomial_degree("P*x", 1); // f: x->x^2+Px+1 assert_simplify("1+P*x+x^2>f(x)"); assert_parsed_expression_polynomial_degree("f(x)", 2); } void assert_expression_has_characteristic_range(Expression e, float range, Preferences::AngleUnit angleUnit = Preferences::AngleUnit::Degree) { Shared::GlobalContext globalContext; quiz_assert(!e.isUninitialized()); e = e.reduce(globalContext, Preferences::ComplexFormat::Cartesian, angleUnit); if (std::isnan(range)) { quiz_assert(std::isnan(e.characteristicXRange(globalContext, angleUnit))); } else { quiz_assert(std::fabs(e.characteristicXRange(globalContext, angleUnit) - range) < 0.0000001f); } } QUIZ_CASE(poincare_characteristic_range) { assert_expression_has_characteristic_range(Cosine::Builder(Symbol(Poincare::Symbol::SpecialSymbols::UnknownX)), 360.0f); assert_expression_has_characteristic_range(Cosine::Builder(Opposite(Symbol(Poincare::Symbol::SpecialSymbols::UnknownX))), 360.0f); assert_expression_has_characteristic_range(Cosine::Builder(Symbol(Poincare::Symbol::SpecialSymbols::UnknownX)), 2.0f*M_PI, Preferences::AngleUnit::Radian); assert_expression_has_characteristic_range(Cosine::Builder(Opposite(Symbol(Poincare::Symbol::SpecialSymbols::UnknownX))), 2.0f*M_PI, Preferences::AngleUnit::Radian); assert_expression_has_characteristic_range(Sine::Builder(Addition(Multiplication(Rational(9),Symbol(Poincare::Symbol::SpecialSymbols::UnknownX)),Rational(10))), 40.0f); assert_expression_has_characteristic_range(Addition(Sine::Builder(Addition(Multiplication(Rational(9),Symbol(Poincare::Symbol::SpecialSymbols::UnknownX)),Rational(10))),Cosine::Builder(Division(Symbol(Poincare::Symbol::SpecialSymbols::UnknownX),Rational(2)))), 720.0f); assert_expression_has_characteristic_range(Addition(Sine::Builder(Addition(Multiplication(Rational(9),Symbol(Poincare::Symbol::SpecialSymbols::UnknownX)),Rational(10))),Cosine::Builder(Division(Symbol(Poincare::Symbol::SpecialSymbols::UnknownX),Rational(2)))), 4.0f*M_PI, Preferences::AngleUnit::Radian); assert_expression_has_characteristic_range(Symbol(Poincare::Symbol::SpecialSymbols::UnknownX), NAN); assert_expression_has_characteristic_range(Addition(Cosine::Builder(Rational(3)),Rational(2)), 0.0f); assert_expression_has_characteristic_range(CommonLogarithm::Builder(Cosine::Builder(Multiplication(Rational(40),Symbol(Poincare::Symbol::SpecialSymbols::UnknownX)))), 9.0f); assert_expression_has_characteristic_range(Cosine::Builder((Expression)Cosine::Builder(Symbol(Poincare::Symbol::SpecialSymbols::UnknownX))), 360.0f); assert_simplify("cos(x)>f(x)"); assert_expression_has_characteristic_range(Function("f",1,Symbol(Poincare::Symbol::SpecialSymbols::UnknownX)), 360.0f); } void assert_parsed_expression_has_variables(const char * expression, const char * variables[], int trueNumberOfVariables) { Expression e = parse_expression(expression); quiz_assert(!e.isUninitialized()); constexpr static int k_maxVariableSize = Poincare::SymbolAbstract::k_maxNameSize; char variableBuffer[Expression::k_maxNumberOfVariables+1][k_maxVariableSize] = {{0}}; Shared::GlobalContext globalContext; int numberOfVariables = e.getVariables(globalContext, [](const char * symbol) { return true; }, (char *)variableBuffer, k_maxVariableSize); quiz_assert(trueNumberOfVariables == numberOfVariables); if (numberOfVariables < 0) { // Too many variables return; } int index = 0; while (variableBuffer[index][0] != 0 || variables[index][0] != 0) { quiz_assert(strcmp(variableBuffer[index], variables[index]) == 0); index++; } } QUIZ_CASE(poincare_get_variables) { const char * variableBuffer1[] = {"x","y",""}; assert_parsed_expression_has_variables("x+y", variableBuffer1, 2); const char * variableBuffer2[] = {"x","y","z","t",""}; assert_parsed_expression_has_variables("x+y+z+2*t", variableBuffer2, 4); const char * variableBuffer3[] = {"a","x","y","k","A", ""}; assert_parsed_expression_has_variables("a+x^2+2*y+k!*A", variableBuffer3, 5); const char * variableBuffer4[] = {"BABA","abab", ""}; assert_parsed_expression_has_variables("BABA+abab", variableBuffer4, 2); const char * variableBuffer5[] = {"BBBBBB", ""}; assert_parsed_expression_has_variables("BBBBBB", variableBuffer5, 1); const char * variableBuffer6[] = {""}; assert_parsed_expression_has_variables("a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+aa+bb+cc+dd+ee+ff+gg+hh+ii+jj+kk+ll+mm+nn+oo", variableBuffer6, -1); // f: x->1+Px+x^2+toto assert_simplify("1+P*x+x^2+toto>f(x)"); const char * variableBuffer7[] = {"tata","toto", ""}; assert_parsed_expression_has_variables("f(tata)", variableBuffer7, 2); } void assert_parsed_expression_has_polynomial_coefficient(const char * expression, const char * symbolName, const char ** coefficients, Preferences::ComplexFormat complexFormat = Preferences::ComplexFormat::Cartesian, Preferences::AngleUnit angleUnit = Preferences::AngleUnit::Degree) { Shared::GlobalContext globalContext; Expression e = parse_expression(expression); quiz_assert(!e.isUninitialized()); e = e.reduce(globalContext, complexFormat, angleUnit); Expression coefficientBuffer[Poincare::Expression::k_maxNumberOfPolynomialCoefficients]; int d = e.getPolynomialReducedCoefficients(symbolName, coefficientBuffer, globalContext, complexFormat, Radian); for (int i = 0; i <= d; i++) { Expression f = parse_expression(coefficients[i]); quiz_assert(!f.isUninitialized()); coefficientBuffer[i] = coefficientBuffer[i].reduce(globalContext, complexFormat, angleUnit); f = f.reduce(globalContext, complexFormat, angleUnit); quiz_assert(coefficientBuffer[i].isIdenticalTo(f)); } quiz_assert(coefficients[d+1] == 0); } QUIZ_CASE(poincare_get_polynomial_coefficients) { const char * coefficient0[] = {"2", "1", "1", 0}; assert_parsed_expression_has_polynomial_coefficient("x^2+x+2", "x", coefficient0); const char * coefficient1[] = {"12+(-6)*P", "12", "3", 0}; //3*x^2+12*x-6*π+12 assert_parsed_expression_has_polynomial_coefficient("3*(x+2)^2-6*P", "x", coefficient1); // TODO: decomment when enable 3-degree polynomes //const char * coefficient2[] = {"2+32*x", "2", "6", "2", 0}; //2*n^3+6*n^2+2*n+2+32*x //assert_parsed_expression_has_polynomial_coefficient("2*(n+1)^3-4n+32*x", "n", coefficient2); const char * coefficient3[] = {"1", "-P", "1", 0}; //x^2-Pi*x+1 assert_parsed_expression_has_polynomial_coefficient("x^2-P*x+1", "x", coefficient3); // f: x->x^2+Px+1 const char * coefficient4[] = {"1", "P", "1", 0}; //x^2+Pi*x+1 assert_simplify("1+P*x+x^2>f(x)"); assert_parsed_expression_has_polynomial_coefficient("f(x)", "x", coefficient4); }