#include "storage_cartesian_function.h" #include "storage_expression_model_store.h" #include "poincare_helpers.h" #include #include #include #include #include using namespace Poincare; namespace Shared { void StorageCartesianFunction::DefaultName(char buffer[], size_t bufferSize) { constexpr int k_maxNumberOfDefaultLetterNames = 4; static constexpr const char k_defaultLetterNames[k_maxNumberOfDefaultLetterNames] = { 'f', 'g', 'h', 'p' }; /* First default names are f, g, h, p and then f0, f1... ie, "f[number]", * for instance "f12", that does not exist yet in the storage. */ size_t constantNameLength = 1; // 'f', no null-terminating char assert(bufferSize > constantNameLength+1); // Find the next available name int currentNumber = -k_maxNumberOfDefaultLetterNames; int currentNumberLength = 0; int availableBufferSize = bufferSize - constantNameLength; while (currentNumberLength < availableBufferSize) { // Choose letter buffer[0] = currentNumber < 0 ? k_defaultLetterNames[k_maxNumberOfDefaultLetterNames+currentNumber] : k_defaultLetterNames[0]; // Choose number if required if (currentNumber >= 0) { currentNumberLength = Poincare::Integer(currentNumber).serialize(&buffer[1], availableBufferSize); } else { buffer[1] = 0; } if (GlobalContext::SymbolAbstractNameIsFree(buffer)) { // Name found break; } currentNumber++; } assert(currentNumberLength >= 0 && currentNumberLength < availableBufferSize); } StorageCartesianFunction StorageCartesianFunction::NewModel(Ion::Storage::Record::ErrorStatus * error, const char * baseName) { static int s_colorIndex = 0; // Create the record char nameBuffer[SymbolAbstract::k_maxNameSize]; int numberOfColors = sizeof(Palette::DataColor)/sizeof(KDColor); CartesianFunctionRecordData data(Palette::DataColor[s_colorIndex++ % numberOfColors]); if (baseName == nullptr) { DefaultName(nameBuffer, SymbolAbstract::k_maxNameSize); baseName = nameBuffer; } *error = Ion::Storage::sharedStorage()->createRecordWithExtension(baseName, GlobalContext::funcExtension, &data, sizeof(data)); // Return if error if (*error != Ion::Storage::Record::ErrorStatus::None) { return StorageCartesianFunction(); } // Return the StorageCartesianFunction withthe new record return StorageCartesianFunction(Ion::Storage::sharedStorage()->recordBaseNamedWithExtension(baseName, GlobalContext::funcExtension)); } int StorageCartesianFunction::derivativeNameWithArgument(char * buffer, size_t bufferSize, char arg) { // Fill buffer with f(x). Keep one char for derivative sign. int numberOfChars = nameWithArgument(buffer, bufferSize-1, arg); assert(numberOfChars + 1 < bufferSize); char * lastChar = buffer+numberOfChars; do { *(lastChar+1) = *lastChar; lastChar--; } while (*(lastChar+1) != '(' && lastChar >= buffer); *(lastChar+1) = '\''; return numberOfChars+1; } bool StorageCartesianFunction::displayDerivative() const { return recordData()->displayDerivative(); } void StorageCartesianFunction::setDisplayDerivative(bool display) { return recordData()->setDisplayDerivative(display); } double StorageCartesianFunction::approximateDerivative(double x, Poincare::Context * context) const { Poincare::Derivative derivative(expression(context).clone(), Symbol(Symbol::SpecialSymbols::UnknownX), Poincare::Float(x)); // derivative takes ownership of Poincare::Float(x) and the clone of expression /* TODO: when we approximate derivative, we might want to simplify the * derivative here. However, we might want to do it once for all x (to avoid * lagging in the derivative table. */ return PoincareHelpers::ApproximateToScalar(derivative, *context); } double StorageCartesianFunction::sumBetweenBounds(double start, double end, Poincare::Context * context) const { Poincare::Integral integral(expression(context).clone(), Poincare::Float(start), Poincare::Float(end)); // Integral takes ownership of args /* TODO: when we approximate integral, we might want to simplify the integral * here. However, we might want to do it once for all x (to avoid lagging in * the derivative table. */ return PoincareHelpers::ApproximateToScalar(integral, *context); } Expression::Coordinate2D StorageCartesianFunction::nextMinimumFrom(double start, double step, double max, Context * context) const { const char unknownX[2] = {Poincare::Symbol::UnknownX, 0}; return expression(context).nextMinimum(unknownX, start, step, max, *context, Preferences::sharedPreferences()->angleUnit()); } Expression::Coordinate2D StorageCartesianFunction::nextMaximumFrom(double start, double step, double max, Context * context) const { const char unknownX[2] = {Poincare::Symbol::UnknownX, 0}; return expression(context).nextMaximum(unknownX, start, step, max, *context, Preferences::sharedPreferences()->angleUnit()); } double StorageCartesianFunction::nextRootFrom(double start, double step, double max, Context * context) const { const char unknownX[2] = {Poincare::Symbol::UnknownX, 0}; return expression(context).nextRoot(unknownX, start, step, max, *context, Preferences::sharedPreferences()->angleUnit()); } Expression::Coordinate2D StorageCartesianFunction::nextIntersectionFrom(double start, double step, double max, Poincare::Context * context, const Shared::StorageFunction * function) const { const char unknownX[2] = {Poincare::Symbol::UnknownX, 0}; return expression(context).nextIntersection(unknownX, start, step, max, *context, Preferences::sharedPreferences()->angleUnit(), function->expression(context)); } StorageCartesianFunction::CartesianFunctionRecordData * StorageCartesianFunction::recordData() const { assert(!isNull()); Ion::Storage::Record::Data d = value(); return reinterpret_cast(const_cast(d.buffer)); } }