#include "logistic_model.h" #include "../store.h" #include #include #include #include #include #include using namespace Poincare; namespace Regression { Layout LogisticModel::layout() { if (m_layout.isUninitialized()) { constexpr int exponentSize = 4; Layout exponentLayoutChildren[exponentSize] = { CodePointLayout::Builder('-', k_layoutFont), CodePointLayout::Builder('b', k_layoutFont), CodePointLayout::Builder(UCodePointMiddleDot, k_layoutFont), CodePointLayout::Builder('X', k_layoutFont) }; constexpr int denominatorSize = 6; Layout layoutChildren[denominatorSize] = { CodePointLayout::Builder('1', k_layoutFont), CodePointLayout::Builder('+', k_layoutFont), CodePointLayout::Builder('a', k_layoutFont), CodePointLayout::Builder(UCodePointMiddleDot, k_layoutFont), CodePointLayout::Builder('e', k_layoutFont), VerticalOffsetLayout::Builder( HorizontalLayout::Builder(exponentLayoutChildren, exponentSize), VerticalOffsetLayoutNode::Position::Superscript ) }; m_layout = FractionLayout::Builder( CodePointLayout::Builder('c', k_layoutFont), HorizontalLayout::Builder(layoutChildren, denominatorSize) ); } return m_layout; } double LogisticModel::evaluate(double * modelCoefficients, double x) const { double a = modelCoefficients[0]; double b = modelCoefficients[1]; double c = modelCoefficients[2]; return c/(1.0+a*exp(-b*x)); } double LogisticModel::levelSet(double * modelCoefficients, double xMin, double step, double xMax, double y, Poincare::Context * context) { double a = modelCoefficients[0]; double b = modelCoefficients[1]; double c = modelCoefficients[2]; if (a == 0 || b == 0 || c == 0 || y == 0) { return NAN; } double lnArgument = (c/y - 1)/a; if (lnArgument <= 0) { return NAN; } return -log(lnArgument)/b; } double LogisticModel::partialDerivate(double * modelCoefficients, int derivateCoefficientIndex, double x) const { double a = modelCoefficients[0]; double b = modelCoefficients[1]; double c = modelCoefficients[2]; double denominator = 1.0+a*exp(-b*x); if (derivateCoefficientIndex == 0) { // Derivate: exp(-b*x)*(-1 * c/(1.0+a*exp(-b*x))^2) return -exp(-b*x) * c/(denominator * denominator); } if (derivateCoefficientIndex == 1) { // Derivate: (-x)*a*exp(-b*x)*(-1/(1.0+a*exp(-b*x))^2) return x*a*exp(-b*x)*c/(denominator * denominator); } if (derivateCoefficientIndex == 2) { // Derivate: (-x)*a*exp(-b*x)*(-1/(1.0+a*exp(-b*x))^2) return 1.0/denominator; } assert(false); return 0.0; } void LogisticModel::specializedInitCoefficientsForFit(double * modelCoefficients, double defaultValue, Store * store, int series) const { assert(store != nullptr && series >= 0 && series < Store::k_numberOfSeries && !store->seriesIsEmpty(series)); modelCoefficients[0] = defaultValue; modelCoefficients[1] = defaultValue; /* If the data is a standard logistic function, the ordinates are between 0 * and c. Twice the standard vertical deviation is a rough estimate of c * that is "close enough" to c to seed the coefficient, without being too * dependent on outliers.*/ modelCoefficients[2] = 2.0*store->standardDeviationOfColumn(series, 1); } }