#include #include "helper.h" using namespace Poincare; QUIZ_CASE(poincare_properties_is_number) { quiz_assert(BasedInteger::Builder("2",Integer::Base::Binary).isNumber()); quiz_assert(BasedInteger::Builder("2",Integer::Base::Decimal).isNumber()); quiz_assert(BasedInteger::Builder("2",Integer::Base::Hexadecimal).isNumber()); quiz_assert(Decimal::Builder("2",3).isNumber()); quiz_assert(Float::Builder(1.0f).isNumber()); quiz_assert(Infinity::Builder(true).isNumber()); quiz_assert(Undefined::Builder().isNumber()); quiz_assert(Rational::Builder(2,3).isNumber()); quiz_assert(!Symbol::Builder('a').isNumber()); quiz_assert(!Multiplication::Builder(Rational::Builder(1), Rational::Builder(2)).isNumber()); quiz_assert(!Addition::Builder(Rational::Builder(1), Rational::Builder(2)).isNumber()); } QUIZ_CASE(poincare_properties_is_number_zero) { Shared::GlobalContext context; quiz_assert(BasedInteger::Builder("2",Integer::Base::Binary).nullStatus(&context) == ExpressionNode::NullStatus::NonNull ); quiz_assert(BasedInteger::Builder("2",Integer::Base::Decimal).nullStatus(&context) == ExpressionNode::NullStatus::NonNull ); quiz_assert(BasedInteger::Builder("2",Integer::Base::Hexadecimal).nullStatus(&context) == ExpressionNode::NullStatus::NonNull ); quiz_assert(BasedInteger::Builder("0",Integer::Base::Binary).nullStatus(&context) == ExpressionNode::NullStatus::Null ); quiz_assert(BasedInteger::Builder("0",Integer::Base::Decimal).nullStatus(&context) == ExpressionNode::NullStatus::Null ); quiz_assert(BasedInteger::Builder("0",Integer::Base::Hexadecimal).nullStatus(&context) == ExpressionNode::NullStatus::Null ); quiz_assert(Decimal::Builder("2",3).nullStatus(&context) == ExpressionNode::NullStatus::NonNull ); quiz_assert(Decimal::Builder("0",0).nullStatus(&context) == ExpressionNode::NullStatus::Null ); quiz_assert(Float::Builder(1.0f).nullStatus(&context) == ExpressionNode::NullStatus::NonNull ); quiz_assert(Float::Builder(0.0f).nullStatus(&context) == ExpressionNode::NullStatus::Null ); quiz_assert(Infinity::Builder(true).nullStatus(&context) == ExpressionNode::NullStatus::NonNull ); quiz_assert(Undefined::Builder().nullStatus(&context) == ExpressionNode::NullStatus::Unknown); quiz_assert(Rational::Builder(2,3).nullStatus(&context) == ExpressionNode::NullStatus::NonNull ); quiz_assert(Rational::Builder(0,1).nullStatus(&context) == ExpressionNode::NullStatus::Null ); quiz_assert(Symbol::Builder('a').nullStatus(&context) == ExpressionNode::NullStatus::Unknown); quiz_assert(Multiplication::Builder(Rational::Builder(1), Rational::Builder(0)).nullStatus(&context) == ExpressionNode::NullStatus::Unknown); quiz_assert(Addition::Builder(Rational::Builder(1), Rational::Builder(-1)).nullStatus(&context) == ExpressionNode::NullStatus::Unknown); quiz_assert(AbsoluteValue::Builder(Rational::Builder(0)).nullStatus(&context) == ExpressionNode::NullStatus::Null); quiz_assert(ArcSine::Builder(Rational::Builder(1,7)).nullStatus(&context) == ExpressionNode::NullStatus::NonNull); quiz_assert(ComplexCartesian::Builder(Rational::Builder(0), Rational::Builder(3, 2)).nullStatus(&context) == ExpressionNode::NullStatus::NonNull); quiz_assert(ComplexCartesian::Builder(Rational::Builder(0), Rational::Builder(0)).nullStatus(&context) == ExpressionNode::NullStatus::Null); quiz_assert(Conjugate::Builder(ComplexCartesian::Builder(Rational::Builder(2, 3), Rational::Builder(3, 2))).nullStatus(&context) == ExpressionNode::NullStatus::NonNull); quiz_assert(Factor::Builder(Rational::Builder(0)).nullStatus(&context) == ExpressionNode::NullStatus::Null); quiz_assert(Factorial::Builder(Rational::Builder(0)).nullStatus(&context) == ExpressionNode::NullStatus::NonNull); quiz_assert(ImaginaryPart::Builder(Rational::Builder(14)).nullStatus(&context) == ExpressionNode::NullStatus::Null); quiz_assert(RealPart::Builder(Rational::Builder(0)).nullStatus(&context) == ExpressionNode::NullStatus::Null); quiz_assert(Parenthesis::Builder(Rational::Builder(-7)).nullStatus(&context) == ExpressionNode::NullStatus::NonNull); quiz_assert(SignFunction::Builder(Rational::Builder(0)).nullStatus(&context) == ExpressionNode::NullStatus::Null); quiz_assert(Unit::Builder(Unit::k_powerRepresentatives, Unit::Prefix::EmptyPrefix()).nullStatus(&context) == ExpressionNode::NullStatus::NonNull); quiz_assert(Division::Builder(Rational::Builder(0), Rational::Builder(3,7)).nullStatus(&context) == ExpressionNode::NullStatus::Null); quiz_assert(Power::Builder(Rational::Builder(0), Rational::Builder(3,7)).nullStatus(&context) == ExpressionNode::NullStatus::Null); quiz_assert(SquareRoot::Builder(Rational::Builder(2,5)).nullStatus(&context) == ExpressionNode::NullStatus::NonNull); } QUIZ_CASE(poincare_properties_is_random) { quiz_assert(Random::Builder().isRandom()); quiz_assert(Randint::Builder(Rational::Builder(1), Rational::Builder(2)).isRandom()); quiz_assert(!Symbol::Builder('a').isRandom()); quiz_assert(!Rational::Builder(2,3).isRandom()); } QUIZ_CASE(poincare_properties_is_parametered_expression) { quiz_assert(Derivative::Builder(Rational::Builder(1), Symbol::Builder('x'), Rational::Builder(2)).isParameteredExpression()); quiz_assert(Integral::Builder(Rational::Builder(1), Symbol::Builder('x'), Rational::Builder(2), Rational::Builder(2)).isParameteredExpression()); quiz_assert(Sum::Builder(Rational::Builder(1), Symbol::Builder('n'), Rational::Builder(2), Rational::Builder(2)).isParameteredExpression()); quiz_assert(Product::Builder(Rational::Builder(1), Symbol::Builder('n'), Rational::Builder(2), Rational::Builder(2)).isParameteredExpression()); quiz_assert(!Symbol::Builder('a').isParameteredExpression()); quiz_assert(!Rational::Builder(2,3).isParameteredExpression()); } void assert_expression_has_property(const char * expression, Context * context, Expression::ExpressionTest test) { Expression e = parse_expression(expression, context, false); quiz_assert_print_if_failure(e.recursivelyMatches(test, context), expression); } void assert_expression_has_not_property(const char * expression, Context * context, Expression::ExpressionTest test) { Expression e = parse_expression(expression, context, false); quiz_assert_print_if_failure(!e.recursivelyMatches(test, context), expression); } QUIZ_CASE(poincare_properties_is_approximate) { Shared::GlobalContext context; assert_expression_has_property("3.4", &context, Expression::IsApproximate); assert_expression_has_property("2.3+1", &context, Expression::IsApproximate); assert_expression_has_not_property("a", &context, Expression::IsApproximate); assert_reduce("42.3→a"); assert_expression_has_property("a", &context, Expression::IsApproximate); Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy(); } QUIZ_CASE(poincare_properties_is_matrix) { Shared::GlobalContext context; assert_expression_has_property("[[1,2][3,4]]", &context, Expression::IsMatrix); assert_expression_has_property("confidence(0.2,3)*2", &context, Expression::IsMatrix); assert_expression_has_property("dim([[1,2][3,4]])/3", &context, Expression::IsMatrix); assert_expression_has_property("prediction(0.3,10)", &context, Expression::IsMatrix); assert_expression_has_property("[[1,2][3,4]]^(-1)", &context, Expression::IsMatrix); assert_expression_has_property("inverse([[1,2][3,4]])", &context, Expression::IsMatrix); assert_expression_has_property("3*identity(4)", &context, Expression::IsMatrix); assert_expression_has_property("transpose([[1,2][3,4]])", &context, Expression::IsMatrix); assert_expression_has_property("ref([[1,2][3,4]])", &context, Expression::IsMatrix); assert_expression_has_property("rref([[1,2][3,4]])", &context, Expression::IsMatrix); assert_expression_has_property("cross([[1][2][3]],[[3][4][5]])", &context, Expression::IsMatrix); assert_expression_has_not_property("2*3+1", &context, Expression::IsMatrix); } void assert_expression_is_deep_matrix(const char * expression) { Shared::GlobalContext context; Expression e = parse_expression(expression, &context, false); quiz_assert_print_if_failure(e.deepIsMatrix(&context), expression); } void assert_expression_is_not_deep_matrix(const char * expression) { Shared::GlobalContext context; Expression e = parse_expression(expression, &context, false); quiz_assert_print_if_failure(!e.deepIsMatrix(&context), expression); } QUIZ_CASE(poincare_properties_deep_is_matrix) { assert_expression_is_not_deep_matrix("diff([[1,2][3,4]],x,2)"); assert_expression_is_not_deep_matrix("sign([[1,2][3,4]])"); assert_expression_is_not_deep_matrix("3"); assert_expression_is_deep_matrix("2*dim(2)"); assert_expression_is_deep_matrix("log(confidence(0.2,20))"); assert_expression_is_deep_matrix("confidence(0.2,20)^2"); assert_expression_is_deep_matrix("cos(confidence(0.2,20))"); } QUIZ_CASE(poincare_properties_is_infinity) { Shared::GlobalContext context; assert_expression_has_property("3.4+inf", &context, Expression::IsInfinity); assert_expression_has_not_property("2.3+1", &context, Expression::IsInfinity); assert_expression_has_not_property("a", &context, Expression::IsInfinity); assert_reduce("42.3+inf→a"); assert_expression_has_property("a", &context, Expression::IsInfinity); Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy(); } constexpr Poincare::ExpressionNode::Sign Positive = Poincare::ExpressionNode::Sign::Positive; constexpr Poincare::ExpressionNode::Sign Negative = Poincare::ExpressionNode::Sign::Negative; constexpr Poincare::ExpressionNode::Sign Unknown = Poincare::ExpressionNode::Sign::Unknown; void assert_reduced_expression_sign(const char * expression, Poincare::ExpressionNode::Sign sign, Preferences::ComplexFormat complexFormat = Cartesian, Preferences::AngleUnit angleUnit = Radian, Preferences::UnitFormat unitFormat = Metric) { Shared::GlobalContext globalContext; Expression e = parse_expression(expression, &globalContext, false); e = e.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, unitFormat, ExpressionNode::ReductionTarget::SystemForApproximation)); quiz_assert_print_if_failure(e.sign(&globalContext) == sign, expression); } QUIZ_CASE(poincare_properties_decimal_sign) { quiz_assert(Decimal::Builder(-2, 3).sign() == ExpressionNode::Sign::Negative); quiz_assert(Decimal::Builder(-2, -3).sign() == ExpressionNode::Sign::Negative); quiz_assert(Decimal::Builder(2, -3).sign() == ExpressionNode::Sign::Positive); quiz_assert(Decimal::Builder(2, 3).sign() == ExpressionNode::Sign::Positive); quiz_assert(Decimal::Builder(0, 1).sign() == ExpressionNode::Sign::Positive); } QUIZ_CASE(poincare_properties_based_integer_sign) { quiz_assert(BasedInteger::Builder(2, Integer::Base::Binary).sign() == ExpressionNode::Sign::Positive); quiz_assert(BasedInteger::Builder(2, Integer::Base::Decimal).sign() == ExpressionNode::Sign::Positive); quiz_assert(BasedInteger::Builder(2, Integer::Base::Hexadecimal).sign() == ExpressionNode::Sign::Positive); } QUIZ_CASE(poincare_properties_rational_sign) { quiz_assert(Rational::Builder(-2).sign() == ExpressionNode::Sign::Negative); quiz_assert(Rational::Builder(-2, 3).sign() == ExpressionNode::Sign::Negative); quiz_assert(Rational::Builder(2, 3).sign() == ExpressionNode::Sign::Positive); quiz_assert(Rational::Builder(0, 3).sign() == ExpressionNode::Sign::Positive); } QUIZ_CASE(poincare_properties_expression_sign) { Shared::GlobalContext context; quiz_assert(ArcCosine::Builder(Rational::Builder(-1,7)).sign(&context) == ExpressionNode::Sign::Positive); quiz_assert(ArcCosine::Builder(Symbol::Builder('a')).sign(&context) == ExpressionNode::Sign::Unknown); quiz_assert(ArcSine::Builder(Rational::Builder(-1,7)).sign(&context) == ExpressionNode::Sign::Negative); quiz_assert(ArcTangent::Builder(Rational::Builder(1,7)).sign(&context) == ExpressionNode::Sign::Positive); quiz_assert(Ceiling::Builder(Rational::Builder(7,3)).sign(&context) == ExpressionNode::Sign::Positive); quiz_assert(Floor::Builder(Rational::Builder(7,3)).sign(&context) == ExpressionNode::Sign::Positive); quiz_assert(Round::Builder(Rational::Builder(7,3), Rational::Builder(1)).sign(&context) == ExpressionNode::Sign::Positive); quiz_assert(Conjugate::Builder(ComplexCartesian::Builder(Rational::Builder(2, 3), BasedInteger::Builder(0, Integer::Base::Binary))).sign(&context) == ExpressionNode::Sign::Positive); quiz_assert(DivisionRemainder::Builder(Decimal::Builder(2.0), Decimal::Builder(3.0)).sign(&context) == ExpressionNode::Sign::Positive); quiz_assert(AbsoluteValue::Builder(Rational::Builder(-14)).sign(&context) == ExpressionNode::Sign::Positive); quiz_assert(FracPart::Builder(Rational::Builder(-7,3)).sign(&context) == ExpressionNode::Sign::Positive); quiz_assert(GreatCommonDivisor::Builder({Rational::Builder(-7),Rational::Builder(-7)}).sign(&context) == ExpressionNode::Sign::Positive); quiz_assert(LeastCommonMultiple::Builder({Rational::Builder(-7),Rational::Builder(-7)}).sign(&context) == ExpressionNode::Sign::Positive); quiz_assert(Opposite::Builder(Rational::Builder(7)).sign(&context) == ExpressionNode::Sign::Negative); quiz_assert(Parenthesis::Builder(Rational::Builder(-7)).sign(&context) == ExpressionNode::Sign::Negative); quiz_assert(PermuteCoefficient::Builder(Rational::Builder(7),Rational::Builder(8)).sign(&context) == ExpressionNode::Sign::Positive); quiz_assert(RealPart::Builder(Rational::Builder(-7)).sign(&context) == ExpressionNode::Sign::Negative); quiz_assert(SignFunction::Builder(Rational::Builder(-7)).sign(&context) == ExpressionNode::Sign::Negative); quiz_assert(Unit::Builder(Unit::k_powerRepresentatives, Unit::Prefix::EmptyPrefix()).sign(&context) == ExpressionNode::Sign::Positive); quiz_assert(VectorNorm::Builder(BasedInteger::Builder(1)).sign(&context) == ExpressionNode::Sign::Positive); quiz_assert(Division::Builder(Rational::Builder(7,3), Rational::Builder(-1)).sign(&context) == ExpressionNode::Sign::Negative); quiz_assert(DivisionQuotient::Builder(Rational::Builder(-7), Rational::Builder(-1)).sign(&context) == ExpressionNode::Sign::Positive); quiz_assert(ArcSine::Builder(Floor::Builder(ArcTangent::Builder(Opposite::Builder(RealPart::Builder(ArcCosine::Builder(Constant::Builder(UCodePointGreekSmallLetterPi))))))).sign(&context) == ExpressionNode::Sign::Negative); } QUIZ_CASE(poincare_properties_sign) { assert_reduced_expression_sign("abs(-cos(2)+I)", Positive); assert_reduced_expression_sign("2.345ᴇ-23", Positive); assert_reduced_expression_sign("-2.345ᴇ-23", Negative); assert_reduced_expression_sign("2×(-3)×abs(-32)", Negative); assert_reduced_expression_sign("2×(-3)×abs(-32)×cos(3)", Unknown); assert_reduced_expression_sign("x", Unknown); assert_reduced_expression_sign("2^(-abs(3))", Positive); assert_reduced_expression_sign("(-2)^4", Positive); assert_reduced_expression_sign("(-2)^3", Negative); assert_reduced_expression_sign("random()", Positive); assert_reduced_expression_sign("42/3", Positive); assert_reduced_expression_sign("-23/32", Negative); assert_reduced_expression_sign("𝐢", Unknown); assert_reduced_expression_sign("-π", Negative); assert_reduced_expression_sign("π", Positive); assert_reduced_expression_sign("ℯ", Positive); assert_reduced_expression_sign("0", Positive); assert_reduced_expression_sign("cos(π/2)", Positive); assert_reduced_expression_sign("cos(90)", Positive, Cartesian, Degree); assert_reduced_expression_sign("√(-1)", Unknown); assert_reduced_expression_sign("√(-1)", Unknown, Real); assert_reduced_expression_sign("sign(π)", Positive); assert_reduced_expression_sign("sign(-π)", Negative); assert_reduced_expression_sign("a", Unknown); assert_reduce("42→a"); assert_reduced_expression_sign("a", Positive); Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy(); } void assert_expression_is_real(const char * expression) { Shared::GlobalContext context; // isReal can be call only on reduced expressions Expression e = parse_expression(expression, &context, false).reduce(ExpressionNode::ReductionContext(&context, Cartesian, Radian, Metric, ExpressionNode::ReductionTarget::SystemForApproximation)); quiz_assert_print_if_failure(e.isReal(&context), expression); } void assert_expression_is_not_real(const char * expression) { Shared::GlobalContext context; // isReal can be call only on reduced expressions Expression e = parse_expression(expression, &context, false).reduce(ExpressionNode::ReductionContext(&context, Cartesian, Radian, Metric, ExpressionNode::ReductionTarget::SystemForApproximation)); quiz_assert_print_if_failure(!e.isReal(&context), expression); } QUIZ_CASE(poincare_properties_is_real) { assert_expression_is_real("atan(4)"); assert_expression_is_not_real("atan(𝐢)"); assert_expression_is_real("conj(4)"); assert_expression_is_not_real("conj(𝐢)"); assert_expression_is_real("sin(4)"); assert_expression_is_not_real("sin(𝐢)"); assert_expression_is_real("quo(2,3+a)"); assert_expression_is_real("sign(2)"); assert_expression_is_real("abs(2)"); assert_expression_is_not_real("abs([[1,2]])"); assert_expression_is_real("ceil(2)"); assert_expression_is_not_real("ceil([[1,2]])"); assert_expression_is_not_real("1+2+3+3×𝐢"); assert_expression_is_real("1+2+3+root(2,3)"); assert_expression_is_real("1×23×3×root(2,3)"); assert_expression_is_not_real("1×23×3×root(2,3)×3×𝐢"); assert_expression_is_not_real("1×23×3×[[1,2]]"); assert_expression_is_not_real("1×23×3×abs(confidence(cos(5)/25,3))"); assert_expression_is_real("π"); assert_expression_is_not_real("unreal"); assert_expression_is_not_real("undef"); assert_expression_is_real("2.3"); assert_expression_is_real("2^3.4"); assert_expression_is_real("(-2)^(-3)"); assert_expression_is_not_real("𝐢^3.4"); assert_expression_is_not_real("2^(3.4𝐢)"); assert_expression_is_not_real("(-2)^0.4"); } void assert_reduced_expression_polynomial_degree(const char * expression, int degree, const char * symbolName = "x", Preferences::ComplexFormat complexFormat = Cartesian, Preferences::AngleUnit angleUnit = Radian, Preferences::UnitFormat unitFormat = Metric) { Shared::GlobalContext globalContext; Expression e = parse_expression(expression, &globalContext, false); Expression result = e.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, unitFormat, SystemForApproximation)); quiz_assert_print_if_failure(result.polynomialDegree(&globalContext, symbolName) == degree, expression); } QUIZ_CASE(poincare_properties_polynomial_degree) { assert_reduced_expression_polynomial_degree("x+1", 1); assert_reduced_expression_polynomial_degree("cos(2)+1", 0); assert_reduced_expression_polynomial_degree("confidence(0.2,10)+1", -1); assert_reduced_expression_polynomial_degree("diff(3×x+x,x,2)", 0); assert_reduced_expression_polynomial_degree("diff(3×x+x,x,x)", 0); assert_reduced_expression_polynomial_degree("diff(3×x+x,x,x)", 0, "a"); assert_reduced_expression_polynomial_degree("(3×x+2)/3", 1); assert_reduced_expression_polynomial_degree("(3×x+2)/x", -1); assert_reduced_expression_polynomial_degree("int(2×x,x, 0, 1)", -1); assert_reduced_expression_polynomial_degree("int(2×x,x, 0, 1)", 0, "a"); assert_reduced_expression_polynomial_degree("[[1,2][3,4]]", -1); assert_reduced_expression_polynomial_degree("(x^2+2)×(x+1)", 3); assert_reduced_expression_polynomial_degree("-(x+1)", 1); assert_reduced_expression_polynomial_degree("(x^2+2)^(3)", 6); assert_reduced_expression_polynomial_degree("prediction(0.2,10)+1", -1); assert_reduced_expression_polynomial_degree("2-x-x^3", 3); assert_reduced_expression_polynomial_degree("π×x", 1); assert_reduced_expression_polynomial_degree("√(-1)×x", -1, "x", Real); // f: x→x^2+πx+1 assert_reduce("1+π×x+x^2→f(x)"); assert_reduced_expression_polynomial_degree("f(x)", 2); Ion::Storage::sharedStorage()->recordNamed("f.func").destroy(); } void assert_expression_has_variables(const char * expression, const char * variables[], int trueNumberOfVariables) { Shared::GlobalContext globalContext; Expression e = parse_expression(expression, &globalContext, false); constexpr static int k_maxVariableSize = Poincare::SymbolAbstract::k_maxNameSize; char variableBuffer[Expression::k_maxNumberOfVariables][k_maxVariableSize] = {{0}}; int numberOfVariables = e.getVariables(&globalContext, [](const char * symbol, Poincare::Context * context) { return true; }, (char *)variableBuffer, k_maxVariableSize); quiz_assert_print_if_failure(trueNumberOfVariables == numberOfVariables, expression); if (numberOfVariables < 0) { // Too many variables return; } int index = 0; while (index < Expression::k_maxNumberOfVariables && (variableBuffer[index][0] != 0 || variables[index][0] != 0)) { quiz_assert_print_if_failure(strcmp(variableBuffer[index], variables[index]) == 0, expression); index++; } } QUIZ_CASE(poincare_properties_get_variables) { const char * variableBuffer1[] = {"x","y",""}; assert_expression_has_variables("x+y", variableBuffer1, 2); const char * variableBuffer2[] = {"x","y","z","t",""}; assert_expression_has_variables("x+y+z+2×t", variableBuffer2, 4); const char * variableBuffer3[] = {"a","x","y","k","A", ""}; assert_expression_has_variables("a+x^2+2×y+k!×A", variableBuffer3, 5); const char * variableBuffer4[] = {"BABA","abab", ""}; assert_expression_has_variables("BABA+abab", variableBuffer4, 2); const char * variableBuffer5[] = {"BBBBBB", ""}; assert_expression_has_variables("BBBBBB", variableBuffer5, 1); const char * variableBuffer6[] = {""}; assert_expression_has_variables("a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+aa+bb+cc+dd+ee+ff+gg+hh+ii+jj+kk+ll+mm+nn+oo", variableBuffer6, -1); assert_expression_has_variables("a+b+c+d+e+f+g", variableBuffer6, -1); // f: x→1+πx+x^2+toto assert_reduce("1+π×x+x^2+toto→f(x)"); const char * variableBuffer7[] = {"tata","toto", ""}; assert_expression_has_variables("f(tata)", variableBuffer7, 2); Ion::Storage::sharedStorage()->recordNamed("f.func").destroy(); const char * variableBuffer8[] = {"y", ""}; assert_expression_has_variables("diff(3x,x,0)y-2", variableBuffer8, 1); const char * variableBuffer9[] = {"a", "b", "c", "d", "e", "f"}; assert_expression_has_variables("a+b+c+d+e+f", variableBuffer9, 6); } void assert_reduced_expression_has_polynomial_coefficient(const char * expression, const char * symbolName, const char ** coefficients, Preferences::ComplexFormat complexFormat = Cartesian, Preferences::AngleUnit angleUnit = Radian, Preferences::UnitFormat unitFormat = Metric, ExpressionNode::SymbolicComputation symbolicComputation = ReplaceAllDefinedSymbolsWithDefinition) { Shared::GlobalContext globalContext; Expression e = parse_expression(expression, &globalContext, false); e = e.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, unitFormat, SystemForAnalysis, symbolicComputation)); Expression coefficientBuffer[Poincare::Expression::k_maxNumberOfPolynomialCoefficients]; int d = e.getPolynomialReducedCoefficients(symbolName, coefficientBuffer, &globalContext, complexFormat, Radian, unitFormat, symbolicComputation); for (int i = 0; i <= d; i++) { Expression f = parse_expression(coefficients[i], &globalContext, false); coefficientBuffer[i] = coefficientBuffer[i].reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, unitFormat, SystemForAnalysis, symbolicComputation)); f = f.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, unitFormat, SystemForAnalysis, symbolicComputation)); quiz_assert_print_if_failure(coefficientBuffer[i].isIdenticalTo(f), expression); } quiz_assert_print_if_failure(coefficients[d+1] == 0, expression); } QUIZ_CASE(poincare_properties_get_polynomial_coefficients) { const char * coefficient0[] = {"2", "1", "1", 0}; assert_reduced_expression_has_polynomial_coefficient("x^2+x+2", "x", coefficient0); const char * coefficient1[] = {"12+(-6)×π", "12", "3", 0}; //3×x^2+12×x-6×π+12 assert_reduced_expression_has_polynomial_coefficient("3×(x+2)^2-6×π", "x", coefficient1); // TODO: decomment when enable 3-degree polynomes //const char * coefficient2[] = {"2+32×x", "2", "6", "2", 0}; //2×n^3+6×n^2+2×n+2+32×x //assert_reduced_expression_has_polynomial_coefficient("2×(n+1)^3-4n+32×x", "n", coefficient2); const char * coefficient3[] = {"1", "-π", "1", 0}; //x^2-π×x+1 assert_reduced_expression_has_polynomial_coefficient("x^2-π×x+1", "x", coefficient3); // f: x→x^2+Px+1 assert_reduce("1+π×x+x^2→f(x)"); const char * coefficient4[] = {"1", "π", "1", 0}; //x^2+π×x+1 assert_reduced_expression_has_polynomial_coefficient("f(x)", "x", coefficient4); const char * coefficient5[] = {"0", "𝐢", 0}; //√(-1)x assert_reduced_expression_has_polynomial_coefficient("√(-1)x", "x", coefficient5); const char * coefficient6[] = {0}; //√(-1)x assert_reduced_expression_has_polynomial_coefficient("√(-1)x", "x", coefficient6, Real); // 3 -> x assert_reduce("3→x"); const char * coefficient7[] = {"4", 0}; assert_reduced_expression_has_polynomial_coefficient("x+1", "x", coefficient7 ); const char * coefficient8[] = {"2", "1", 0}; assert_reduced_expression_has_polynomial_coefficient("x+2", "x", coefficient8, Real, Radian, Metric, DoNotReplaceAnySymbol); assert_reduced_expression_has_polynomial_coefficient("x+2", "x", coefficient8, Real, Radian, Metric, ReplaceDefinedFunctionsWithDefinitions); assert_reduced_expression_has_polynomial_coefficient("f(x)", "x", coefficient4, Cartesian, Radian, Metric, ReplaceDefinedFunctionsWithDefinitions); // Clear the storage Ion::Storage::sharedStorage()->recordNamed("f.func").destroy(); Ion::Storage::sharedStorage()->recordNamed("x.exp").destroy(); } void assert_reduced_expression_unit_is(const char * expression, const char * unit) { Shared::GlobalContext globalContext; ExpressionNode::ReductionContext redContext(&globalContext, Real, Degree, Metric, SystemForApproximation); Expression e = parse_expression(expression, &globalContext, false); e = e.reduce(redContext); Expression u1; e = e.removeUnit(&u1); Expression e2 = parse_expression(unit, &globalContext, false); Expression u2; e2 = e2.reduce(redContext); e2.removeUnit(&u2); quiz_assert_print_if_failure(u1.isUninitialized() == u2.isUninitialized() && (u1.isUninitialized() || u1.isIdenticalTo(u2)), expression); } QUIZ_CASE(poincare_properties_remove_unit) { assert_reduced_expression_unit_is("_km", "_m"); assert_reduced_expression_unit_is("_min/_km", "_m^(-1)×_s"); assert_reduced_expression_unit_is("_km^3", "_m^3"); assert_reduced_expression_unit_is("1_m+_km", "_m"); assert_reduced_expression_unit_is("_L^2×3×_s", "_m^6×_s"); } void assert_additional_results_compute_to(const char * expression, const char * * results, int length, Preferences::UnitFormat unitFormat = Metric) { Shared::GlobalContext globalContext; constexpr int maxNumberOfResults = 5; assert(length <= maxNumberOfResults); Expression additional[maxNumberOfResults]; ExpressionNode::ReductionContext reductionContext = ExpressionNode::ReductionContext(&globalContext, Cartesian, Degree, unitFormat, User, ReplaceAllSymbolsWithUndefined, DefaultUnitConversion); Expression e = parse_expression(expression, &globalContext, false).reduce(reductionContext); Expression units; e = e.removeUnit(&units); double value = e.approximateToScalar(&globalContext, Cartesian, Degree); if (!Unit::ShouldDisplayAdditionalOutputs(value, units, unitFormat)) { quiz_assert(length == 0); return; } const int numberOfResults = Unit::SetAdditionalExpressions(units, value, additional, maxNumberOfResults, reductionContext); quiz_assert(numberOfResults == length); for (int i = 0; i < length; i++) { assert_expression_serialize_to(additional[i], results[i], Preferences::PrintFloatMode::Decimal); } } QUIZ_CASE(poincare_expression_additional_results) { // Time assert_additional_results_compute_to("3×_s", nullptr, 0); const char * array1[1] = {"1×_min+1×_s"}; assert_additional_results_compute_to("61×_s", array1, 1); const char * array2[1] = {"1×_day+10×_h+17×_min+36×_s"}; assert_additional_results_compute_to("123456×_s", array2, 1); const char * array3[1] = {"7×_day"}; assert_additional_results_compute_to("1×_week", array3, 1); // Distance const char * array4[1] = {"19×_mi+853×_yd+1×_ft+7×_in"}; assert_additional_results_compute_to("1234567×_in", array4, 1, Imperial); const char * array5[1] = {"1×_yd+7.700787×_in"}; assert_additional_results_compute_to("1.11×_m", array5, 1, Imperial); assert_additional_results_compute_to("1.11×_m", nullptr, 0, Metric); // Masses const char * array6[1] = {"1×_shtn+240×_lb"}; assert_additional_results_compute_to("1×_lgtn", array6, 1, Imperial); const char * array7[1] = {"2×_lb+3.273962×_oz"}; assert_additional_results_compute_to("1×_kg", array7, 1, Imperial); assert_additional_results_compute_to("1×_kg", nullptr, 0, Metric); // Temperatures const char * array14[2] = {"-273.15×_°C", "-459.67×_°F"}; assert_additional_results_compute_to("0×_K", array14, 2, Metric); const char * array15[2] = {"-279.67×_°F", "-173.15×_°C"}; assert_additional_results_compute_to("100×_K", array15, 2, Imperial); const char * array16[2] = {"12.02×_°F", "262.05×_K"}; assert_additional_results_compute_to("-11.1×_°C", array16, 2); const char * array17[2] = {"-20×_°C", "253.15×_K"}; assert_additional_results_compute_to("-4×_°F", array17, 2); // Energy const char * array8[3] = {"3.6×_MJ", "1×_kW×_h", "2.246943ᴇ13×_TeV"}; assert_additional_results_compute_to("3.6×_MN_m", array8, 3); // Volume const char * array9[2] = {"264×_gal+1×_pt+0.7528377×_cup", "1000×_L"}; assert_additional_results_compute_to("1×_m^3", array9, 2, Imperial); const char * array10[2] = {"48×_gal+1×_pt+1.5625×_cup", "182.5426×_L"}; assert_additional_results_compute_to("12345×_tbsp", array10, 2, Imperial); const char * array11[2] = {"182.5426×_L"}; assert_additional_results_compute_to("12345×_tbsp", array11, 1, Metric); // Speed const char * array12[1] = {"3.6×_km×_h^\x12-1\x13"}; assert_additional_results_compute_to("1×_m/_s", array12, 1, Metric); const char * array13[2] = {"2.236936×_mi×_h^\x12-1\x13", "3.6×_km×_h^\x12-1\x13"}; assert_additional_results_compute_to("1×_m/_s", array13, 2, Imperial); }