Files
Upsilon/apps/shared/continuous_function_cache.cpp
circuit10 b44a95a9b3 Casio fx-CG series port (#324)
* Initial test - working on Linux

* Try to make it work with liba

* Stop using liba and the filesystem

* IT WORKS

* Key input, full res, fix some of the crashes

* Fix the hang when doing calculations

* Add some more key mappings

* Fix the square root issue

* Icons

* Better key mappings, brightness control, better gamma correction, more effficient framebuffer

* Cleanup stage 1

* Cleanup stage 2

* Make the build system build a g3a

* Make it not exit when you press the menu button

* Add Casio port to README

* Use omega-master instead of omega-dev

* Fix mistake with cherry-picking in the README

* Fix internal storage crash

* Fix compile error on Numworks calculators

* Upsilon branding

* Sharper icon

* Make the CI work

* Add power off and improve menu

* Map Alpha + up/down to the brightness shortcut

* Add missing file

* Fix web CI build

* Revert "Fix web CI build"

This reverts commit f19657d9fc.

* Change "prizm" to "fxcg"

* Add FASTLOAD option for Add-in Push

* Add some charatcers to the catalog on Casio and improve key mappings

* Build with -Os -flto

* Disable LTO for now as it's causing crashes

* Put back the fonts I accidently changed

I'd like to add an option for this though as I prefer the ones from Epsilon
2023-05-10 18:28:18 +02:00

168 lines
6.1 KiB
C++

#include "continuous_function_cache.h"
#include "continuous_function.h"
#include <limits.h>
namespace Shared {
constexpr int ContinuousFunctionCache::k_sizeOfCache;
constexpr float ContinuousFunctionCache::k_cacheHitTolerance;
constexpr int ContinuousFunctionCache::k_numberOfAvailableCaches;
// public
void ContinuousFunctionCache::PrepareForCaching(void * fun, ContinuousFunctionCache * cache, float tMin, float tStep) {
ContinuousFunction * function = static_cast<ContinuousFunction *>(fun);
if (!cache) {
/* ContinuousFunctionStore::cacheAtIndex has returned a nullptr : the index
* of the function we are trying to draw is greater than the number of
* available caches, so we just tell the function to not lookup any cache. */
function->setCache(nullptr);
return;
}
if (tStep < 3 * k_cacheHitTolerance) {
/* If tStep is lower than twice the tolerance, we risk shifting the index
* by 1 for cache hits. As an added safety, we add another buffer of
* k_cacheHitTolerance, raising the threshold for caching to three times
* the tolerance. */
function->setCache(nullptr);
return;
}
if (function->cache() != cache) {
cache->clear();
function->setCache(cache);
} else if (tStep != 0.f && tStep != cache->step()) {
cache->clear();
}
if (function->plotType() == ContinuousFunction::PlotType::Cartesian && tStep != 0) {
function->cache()->pan(function, tMin);
}
function->cache()->setRange(function, tMin, tStep);
}
void ContinuousFunctionCache::clear() {
m_startOfCache = 0;
m_tStep = 0;
invalidateBetween(0, k_sizeOfCache);
}
Poincare::Coordinate2D<float> ContinuousFunctionCache::valueForParameter(const ContinuousFunction * function, Poincare::Context * context, float t) {
int resIndex = indexForParameter(function, t);
if (resIndex < 0) {
return function->privateEvaluateXYAtParameter(t, context);
}
return valuesAtIndex(function, context, t, resIndex);
}
void ContinuousFunctionCache::ComputeNonCartesianSteps(float * tStep, float * tCacheStep, float tMax, float tMin) {
// Expected step length
*tStep = (tMax - tMin) / Graph::GraphView::k_graphStepDenominator;
/* Parametric and polar functions require caching both x and y values,
* with the same k_sizeOfCache. To cover the entire range,
* number of cacheable points is half the cache size. */
const int numberOfCacheablePoints = k_sizeOfCache / 2;
const int numberOfWholeSteps = static_cast<int>(Graph::GraphView::k_graphStepDenominator);
static_assert(numberOfCacheablePoints % numberOfWholeSteps == 0, "numberOfCacheablePoints should be a multiple of numberOfWholeSteps for optimal caching");
const int multiple = numberOfCacheablePoints / numberOfWholeSteps;
// Ignore this on Casio calculators for now, as the screen resolution breaks this
// TODO: fix this. if it's possible
#ifndef _FXCG
static_assert(multiple && !(multiple & (multiple - 1)), "multiple should be a power of 2 for optimal caching");
#endif
/* Define cacheStep such that every whole graph steps are equally divided
* For instance, with :
* graphStepDenominator = 10.1
* numberOfCacheablePoints = 160
* tMin [----------------|----------------| ... |----------------|**] tMax
* step1 step2 step10 step11
* There are 11 steps, the first 10 are whole and have an equal size (tStep).
* There are 16 cache points in the first 10 steps, 160 total cache points. */
*tCacheStep = *tStep / multiple;
}
// private
void ContinuousFunctionCache::invalidateBetween(int iInf, int iSup) {
for (int i = iInf; i < iSup; i++) {
m_cache[i] = NAN;
}
}
void ContinuousFunctionCache::setRange(ContinuousFunction * function, float tMin, float tStep) {
m_tMin = tMin;
m_tStep = tStep;
}
int ContinuousFunctionCache::indexForParameter(const ContinuousFunction * function, float t) const {
float delta = (t - m_tMin) / m_tStep;
if (delta < 0 || delta > INT_MAX) {
return -1;
}
int res = std::round(delta);
assert(res >= 0);
if ((res >= k_sizeOfCache && function->plotType() == ContinuousFunction::PlotType::Cartesian)
|| (res >= k_sizeOfCache / 2 && function->plotType() != ContinuousFunction::PlotType::Cartesian)
|| std::fabs(res - delta) > k_cacheHitTolerance) {
return -1;
}
assert(function->plotType() == ContinuousFunction::PlotType::Cartesian || m_startOfCache == 0);
return (res + m_startOfCache) % k_sizeOfCache;
}
Poincare::Coordinate2D<float> ContinuousFunctionCache::valuesAtIndex(const ContinuousFunction * function, Poincare::Context * context, float t, int i) {
if (function->plotType() == ContinuousFunction::PlotType::Cartesian) {
if (std::isnan(m_cache[i])) {
m_cache[i] = function->privateEvaluateXYAtParameter(t, context).x2();
}
return Poincare::Coordinate2D<float>(t, m_cache[i]);
}
if (std::isnan(m_cache[2 * i]) || std::isnan(m_cache[2 * i + 1])) {
Poincare::Coordinate2D<float> res = function->privateEvaluateXYAtParameter(t, context);
m_cache[2 * i] = res.x1();
m_cache[2 * i + 1] = res.x2();
}
return Poincare::Coordinate2D<float>(m_cache[2 * i], m_cache[2 * i + 1]);
}
void ContinuousFunctionCache::pan(ContinuousFunction * function, float newTMin) {
assert(function->plotType() == ContinuousFunction::PlotType::Cartesian);
if (newTMin == m_tMin) {
return;
}
float dT = (newTMin - m_tMin) / m_tStep;
m_tMin = newTMin;
if (std::fabs(dT) > INT_MAX) {
clear();
return;
}
int dI = std::round(dT);
if (dI >= k_sizeOfCache || dI <= -k_sizeOfCache || std::fabs(dT - dI) > k_cacheHitTolerance) {
clear();
return;
}
int oldStart = m_startOfCache;
m_startOfCache = (m_startOfCache + dI) % k_sizeOfCache;
if (m_startOfCache < 0) {
m_startOfCache += k_sizeOfCache;
}
if (dI > 0) {
if (m_startOfCache > oldStart) {
invalidateBetween(oldStart, m_startOfCache);
} else {
invalidateBetween(oldStart, k_sizeOfCache);
invalidateBetween(0, m_startOfCache);
}
} else {
if (m_startOfCache > oldStart) {
invalidateBetween(m_startOfCache, k_sizeOfCache);
invalidateBetween(0, oldStart);
} else {
invalidateBetween(m_startOfCache, oldStart);
}
}
}
}