Files
Upsilon/apps/shared/interactive_curve_view_range.cpp

313 lines
13 KiB
C++

#include "interactive_curve_view_range.h"
#include <ion.h>
#include <cmath>
#include <stddef.h>
#include <assert.h>
#include <poincare/ieee754.h>
#include <poincare/preferences.h>
#include <poincare/zoom.h>
#include <algorithm>
using namespace Poincare;
namespace Shared {
void InteractiveCurveViewRange::setDelegate(InteractiveCurveViewRangeDelegate * delegate) {
m_delegate = delegate;
if (delegate) {
m_delegate->updateZoomButtons();
}
}
void InteractiveCurveViewRange::setZoomAuto(bool v) {
if (m_zoomAuto == v) {
return;
}
m_zoomAuto = v;
if (m_delegate) {
m_delegate->updateZoomButtons();
}
}
void InteractiveCurveViewRange::setZoomNormalize(bool v) {
if (m_zoomNormalize == v) {
return;
}
m_zoomNormalize = v;
if (m_delegate) {
m_delegate->updateZoomButtons();
}
}
float InteractiveCurveViewRange::roundLimit(float y, float range, bool isMin) {
/* Floor/ceil to a round number, with a precision depending on the range.
* A range within : | Will have a magnitude : | 3.14 would be floored to :
* [100,1000] | 10 | 0
* [10,100] | 1 | 3
* [1,10] | 0.1 | 3.1 */
float magnitude = std::pow(10.0f, Poincare::IEEE754<float>::exponentBase10(range) - 1.0f);
if (isMin) {
return magnitude * std::floor(y / magnitude);
}
return magnitude * std::ceil(y / magnitude);
}
void InteractiveCurveViewRange::setXMin(float xMin) {
MemoizedCurveViewRange::protectedSetXMin(xMin, k_lowerMaxFloat, k_upperMaxFloat);
}
void InteractiveCurveViewRange::setXMax(float xMax) {
MemoizedCurveViewRange::protectedSetXMax(xMax, k_lowerMaxFloat, k_upperMaxFloat);
}
void InteractiveCurveViewRange::setYMin(float yMin) {
MemoizedCurveViewRange::protectedSetYMin(yMin, k_lowerMaxFloat, k_upperMaxFloat);
}
void InteractiveCurveViewRange::setYMax(float yMax) {
MemoizedCurveViewRange::protectedSetYMax(yMax, k_lowerMaxFloat, k_upperMaxFloat);
}
float InteractiveCurveViewRange::yGridUnit() const {
float res = MemoizedCurveViewRange::yGridUnit();
if (m_zoomNormalize) {
/* When m_zoomNormalize is active, both xGridUnit and yGridUnit will be the
* same. To declutter the X axis, we try a unit twice as large. We check
* that it allows enough graduations on the Y axis, but if the standard
* unit would lead to too many graduations on the X axis, we force the
* larger unit anyways. */
float numberOfUnits = (yMax() - yMin()) / res;
if (numberOfUnits > k_maxNumberOfXGridUnits || numberOfUnits / 2.f > k_minNumberOfYGridUnits) {
return 2 * res;
}
}
return res;
}
void InteractiveCurveViewRange::zoom(float ratio, float x, float y) {
float xMi = xMin();
float xMa = xMax();
float yMi = yMin();
float yMa = yMax();
if (ratio*std::fabs(xMa-xMi) < Range1D::k_minFloat || ratio*std::fabs(yMa-yMi) < Range1D::k_minFloat) {
return;
}
float centerX = std::isnan(x) || std::isinf(x) ? xCenter() : x;
float centerY = std::isnan(y) || std::isinf(y) ? yCenter() : y;
Zoom::SetZoom(ratio, centerX, centerY, &xMi, &xMa, &yMi, &yMa);
if (!std::isnan(xMi) && !std::isnan(xMa)) {
setZoomAuto(false);
m_xRange.setMax(xMa, k_lowerMaxFloat, k_upperMaxFloat);
MemoizedCurveViewRange::protectedSetXMin(xMi, k_lowerMaxFloat, k_upperMaxFloat);
}
if (!std::isnan(yMi) && !std::isnan(yMa)) {
setZoomAuto(false);
m_yRange.setMax(yMa, k_lowerMaxFloat, k_upperMaxFloat);
MemoizedCurveViewRange::protectedSetYMin(yMi, k_lowerMaxFloat, k_upperMaxFloat);
}
m_offscreenYAxis *= ratio;
setZoomNormalize(isOrthonormal());
}
void InteractiveCurveViewRange::panWithVector(float x, float y) {
if (clipped(xMin() + x, false) != xMin() + x || clipped(xMax() + x, true) != xMax() + x || clipped(yMin() + y, false) != yMin() + y || clipped(yMax() + y, true) != yMax() + y || std::isnan(clipped(xMin() + x, false)) || std::isnan(clipped(xMax() + x, true)) || std::isnan(clipped(yMin() + y, false)) || std::isnan(clipped(yMax() + y, true))) {
return;
}
if (x != 0.f || y != 0.f) {
setZoomAuto(false);
}
m_xRange.setMax(xMax()+x, k_lowerMaxFloat, k_upperMaxFloat);
MemoizedCurveViewRange::protectedSetXMin(xMin() + x, k_lowerMaxFloat, k_upperMaxFloat);
m_yRange.setMax(yMax()+y, k_lowerMaxFloat, k_upperMaxFloat);
MemoizedCurveViewRange::protectedSetYMin(yMin() + y, k_lowerMaxFloat, k_upperMaxFloat);
}
void InteractiveCurveViewRange::normalize(bool forceChangeY) {
/* We center the ranges on the current range center, and put each axis so that
* 1cm = 2 current units. */
if (isOrthonormal()) {
return;
}
setZoomAuto(false);
float newXMin = xMin(), newXMax = xMax(), newYMin = yMin(), newYMax = yMax();
const float unit = std::max(xGridUnit(), yGridUnit());
const float newXHalfRange = NormalizedXHalfRange(unit);
const float newYHalfRange = NormalizedYHalfRange(unit);
float normalizedYXRatio = newYHalfRange/newXHalfRange;
/* Most of the time, we do not want to shrink, to avoid hiding parts of the
* function. However, when forceChangeY is true, we shrink if the Y range is
* the longer one. */
bool shrink = forceChangeY && (newYMax - newYMin) / (newXMax - newXMin) > normalizedYXRatio;
Zoom::SetToRatio(normalizedYXRatio, &newXMin, &newXMax, &newYMin, &newYMax, shrink);
m_xRange.setMin(newXMin, k_lowerMaxFloat, k_upperMaxFloat);
MemoizedCurveViewRange::protectedSetXMax(newXMax, k_lowerMaxFloat, k_upperMaxFloat);
m_yRange.setMin(newYMin, k_lowerMaxFloat, k_upperMaxFloat);
MemoizedCurveViewRange::protectedSetYMax(newYMax, k_lowerMaxFloat, k_upperMaxFloat);
/* The range should be close to orthonormal, unless :
* - it has been clipped because the maximum bounds have been reached.
* - the the bounds are too close and of too large a magnitude, leading to
* a drastic loss of significance. */
assert(isOrthonormal()
|| xMin() <= - k_lowerMaxFloat || xMax() >= k_lowerMaxFloat || yMin() <= - k_lowerMaxFloat || yMax() >= k_lowerMaxFloat
|| normalizationSignificantBits() <= 0);
setZoomNormalize(isOrthonormal());
}
void InteractiveCurveViewRange::setDefault() {
if (m_delegate == nullptr) {
return;
}
/* If m_zoomNormalize was left active, xGridUnit() would return the value of
* yGridUnit, even if the ranger were not truly normalized. We use
* setZoomNormalize to refresh the button in case the graph does not end up
* normalized. */
setZoomNormalize(false);
// Compute the interesting range
m_delegate->interestingRanges(this);
/* If the horizontal bounds are integers, they are preset values and should
* not be changed. */
bool isDefaultRange = hasDefaultRange();
// Add margins, then round limits.
float newXMin = xMin(), newXMax = xMax();
if (!isDefaultRange) {
float xRange = xMax() - xMin();
newXMin = roundLimit(m_delegate->addMargin(xMin(), xRange, false, true), xRange, true);
newXMax = roundLimit(m_delegate->addMargin(xMax(), xRange, false, false), xRange, false);
}
m_xRange.setMin(newXMin, k_lowerMaxFloat, k_upperMaxFloat);
// Use MemoizedCurveViewRange::protectedSetXMax to update xGridUnit
MemoizedCurveViewRange::protectedSetXMax(newXMax, k_lowerMaxFloat, k_upperMaxFloat);
float yRange = yMax() - yMin();
m_yRange.setMin(roundLimit(m_delegate->addMargin(yMin(), yRange, true , true), yRange, true), k_lowerMaxFloat, k_upperMaxFloat);
MemoizedCurveViewRange::protectedSetYMax(roundLimit(m_delegate->addMargin(yMax(), yRange, true , false), yRange, false), k_lowerMaxFloat, k_upperMaxFloat);
if (m_delegate->defaultRangeIsNormalized() || shouldBeNormalized()) {
/* Normalize the axes, so that a polar circle is displayed as a circle.
* If we are displaying cartesian functions with a default range, we want
* the X bounds untouched. */
normalize(isDefaultRange && !m_delegate->defaultRangeIsNormalized());
}
setZoomAuto(true);
}
void InteractiveCurveViewRange::centerAxisAround(Axis axis, float position) {
if (std::isnan(position)) {
return;
}
if (axis == Axis::X) {
float range = xMax() - xMin();
if (std::fabs(position/range) > k_maxRatioPositionRange) {
range = Range1D::defaultRangeLengthFor(position);
}
float newXMax = position + range/2.0f;
if (xMax() != newXMax) {
setZoomAuto(false);
m_xRange.setMax(newXMax, k_lowerMaxFloat, k_upperMaxFloat);
MemoizedCurveViewRange::protectedSetXMin(newXMax - range, k_lowerMaxFloat, k_upperMaxFloat);
}
} else {
float range = yMax() - yMin();
if (std::fabs(position/range) > k_maxRatioPositionRange) {
range = Range1D::defaultRangeLengthFor(position);
}
float newYMax = position + range/2.0f;
if (yMax() != newYMax) {
setZoomAuto(false);
m_yRange.setMax(position + range/2.0f, k_lowerMaxFloat, k_upperMaxFloat);
MemoizedCurveViewRange::protectedSetYMin(position - range/2.0f, k_lowerMaxFloat, k_upperMaxFloat);
}
}
setZoomNormalize(isOrthonormal());
}
void InteractiveCurveViewRange::panToMakePointVisible(float x, float y, float topMarginRatio, float rightMarginRatio, float bottomMarginRatio, float leftMarginRatio, float pixelWidth) {
if (!std::isinf(x) && !std::isnan(x)) {
const float xRange = xMax() - xMin();
const float leftMargin = leftMarginRatio * xRange;
if (x < xMin() + leftMargin) {
setZoomAuto(false);
/* The panning increment is a whole number of pixels so that the caching
* for cartesian functions is not invalidated. */
const float newXMin = std::floor((x - leftMargin - xMin()) / pixelWidth) * pixelWidth + xMin();
m_xRange.setMax(newXMin + xRange, k_lowerMaxFloat, k_upperMaxFloat);
MemoizedCurveViewRange::protectedSetXMin(newXMin, k_lowerMaxFloat, k_upperMaxFloat);
}
const float rightMargin = rightMarginRatio * xRange;
if (x > xMax() - rightMargin) {
setZoomAuto(false);
const float newXMax = std::ceil((x + rightMargin - xMax()) / pixelWidth) * pixelWidth + xMax();
m_xRange.setMax(newXMax, k_lowerMaxFloat, k_upperMaxFloat);
MemoizedCurveViewRange::protectedSetXMin(xMax() - xRange, k_lowerMaxFloat, k_upperMaxFloat);
}
}
if (!std::isinf(y) && !std::isnan(y)) {
const float yRange = yMax() - yMin();
const float bottomMargin = bottomMarginRatio * yRange;
if (y < yMin() + bottomMargin) {
setZoomAuto(false);
const float newYMin = y - bottomMargin;
m_yRange.setMax(newYMin + yRange, k_lowerMaxFloat, k_upperMaxFloat);
MemoizedCurveViewRange::protectedSetYMin(newYMin, k_lowerMaxFloat, k_upperMaxFloat);
}
const float topMargin = topMarginRatio * yRange;
if (y > yMax() - topMargin) {
setZoomAuto(false);
m_yRange.setMax(y + topMargin, k_lowerMaxFloat, k_upperMaxFloat);
MemoizedCurveViewRange::protectedSetYMin(yMax() - yRange, k_lowerMaxFloat, k_upperMaxFloat);
}
}
/* Panning to a point greater than the maximum range of 10^8 could make the
* graph not normalized.*/
setZoomNormalize(isOrthonormal());
}
bool InteractiveCurveViewRange::shouldBeNormalized() const {
float ratio = (yMax() - yMin()) / (xMax() - xMin());
return ratio >= NormalYXRatio() / k_orthonormalTolerance && ratio <= NormalYXRatio() * k_orthonormalTolerance;
}
bool InteractiveCurveViewRange::isOrthonormal() const {
int significantBits = normalizationSignificantBits();
if (significantBits <= 0) {
return false;
}
float ratio = (yMax() - yMin() + offscreenYAxis()) / (xMax() - xMin());
/* The last N (= 23 - significantBits) bits of "ratio" mantissa have become
* insignificant. "tolerance" is the difference between ratio with those N
* bits set to 1, and ratio with those N bits set to 0 ; i.e. a measure of
* the interval in which numbers are indistinguishable from ratio with this
* level of precision. */
float tolerance = std::pow(2.f, IEEE754<float>::exponent(ratio) - significantBits);
return ratio - tolerance <= NormalYXRatio() && ratio + tolerance >= NormalYXRatio();
}
int InteractiveCurveViewRange::normalizationSignificantBits() const {
float xr = std::fabs(xMin()) > std::fabs(xMax()) ? xMax() / xMin() : xMin() / xMax();
float yr = std::fabs(yMin()) > std::fabs(yMax()) ? yMax() / yMin() : yMin() / yMax();
/* The subtraction x - y induces a loss of significance of -log2(1-x/y)
* bits. Since normalizing requires computing xMax - xMin and yMax - yMin,
* the ratio of the normalized range will deviate from the Normal ratio. We
* add an extra two lost bits to account for loss of precision from other
* sources. */
float loss = std::log2(std::min(1.f - xr, 1.f - yr));
if (loss > 0.f) {
loss = 0.f;
}
return std::floor(loss + 23.f - 2.f);
}
}