mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-18 16:27:34 +01:00
313 lines
13 KiB
C++
313 lines
13 KiB
C++
#include "interactive_curve_view_range.h"
|
|
#include <ion.h>
|
|
#include <cmath>
|
|
#include <stddef.h>
|
|
#include <assert.h>
|
|
#include <poincare/ieee754.h>
|
|
#include <poincare/preferences.h>
|
|
#include <poincare/zoom.h>
|
|
#include <algorithm>
|
|
|
|
using namespace Poincare;
|
|
|
|
namespace Shared {
|
|
|
|
void InteractiveCurveViewRange::setDelegate(InteractiveCurveViewRangeDelegate * delegate) {
|
|
m_delegate = delegate;
|
|
if (delegate) {
|
|
m_delegate->updateZoomButtons();
|
|
}
|
|
}
|
|
|
|
void InteractiveCurveViewRange::setZoomAuto(bool v) {
|
|
if (m_zoomAuto == v) {
|
|
return;
|
|
}
|
|
m_zoomAuto = v;
|
|
if (m_delegate) {
|
|
m_delegate->updateZoomButtons();
|
|
}
|
|
}
|
|
|
|
void InteractiveCurveViewRange::setZoomNormalize(bool v) {
|
|
if (m_zoomNormalize == v) {
|
|
return;
|
|
}
|
|
m_zoomNormalize = v;
|
|
if (m_delegate) {
|
|
m_delegate->updateZoomButtons();
|
|
}
|
|
}
|
|
|
|
float InteractiveCurveViewRange::roundLimit(float y, float range, bool isMin) {
|
|
/* Floor/ceil to a round number, with a precision depending on the range.
|
|
* A range within : | Will have a magnitude : | 3.14 would be floored to :
|
|
* [100,1000] | 10 | 0
|
|
* [10,100] | 1 | 3
|
|
* [1,10] | 0.1 | 3.1 */
|
|
float magnitude = std::pow(10.0f, Poincare::IEEE754<float>::exponentBase10(range) - 1.0f);
|
|
if (isMin) {
|
|
return magnitude * std::floor(y / magnitude);
|
|
}
|
|
return magnitude * std::ceil(y / magnitude);
|
|
}
|
|
|
|
void InteractiveCurveViewRange::setXMin(float xMin) {
|
|
MemoizedCurveViewRange::protectedSetXMin(xMin, k_lowerMaxFloat, k_upperMaxFloat);
|
|
}
|
|
|
|
void InteractiveCurveViewRange::setXMax(float xMax) {
|
|
MemoizedCurveViewRange::protectedSetXMax(xMax, k_lowerMaxFloat, k_upperMaxFloat);
|
|
}
|
|
|
|
void InteractiveCurveViewRange::setYMin(float yMin) {
|
|
MemoizedCurveViewRange::protectedSetYMin(yMin, k_lowerMaxFloat, k_upperMaxFloat);
|
|
}
|
|
|
|
void InteractiveCurveViewRange::setYMax(float yMax) {
|
|
MemoizedCurveViewRange::protectedSetYMax(yMax, k_lowerMaxFloat, k_upperMaxFloat);
|
|
}
|
|
|
|
float InteractiveCurveViewRange::yGridUnit() const {
|
|
float res = MemoizedCurveViewRange::yGridUnit();
|
|
if (m_zoomNormalize) {
|
|
/* When m_zoomNormalize is active, both xGridUnit and yGridUnit will be the
|
|
* same. To declutter the X axis, we try a unit twice as large. We check
|
|
* that it allows enough graduations on the Y axis, but if the standard
|
|
* unit would lead to too many graduations on the X axis, we force the
|
|
* larger unit anyways. */
|
|
float numberOfUnits = (yMax() - yMin()) / res;
|
|
if (numberOfUnits > k_maxNumberOfXGridUnits || numberOfUnits / 2.f > k_minNumberOfYGridUnits) {
|
|
return 2 * res;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void InteractiveCurveViewRange::zoom(float ratio, float x, float y) {
|
|
float xMi = xMin();
|
|
float xMa = xMax();
|
|
float yMi = yMin();
|
|
float yMa = yMax();
|
|
if (ratio*std::fabs(xMa-xMi) < Range1D::k_minFloat || ratio*std::fabs(yMa-yMi) < Range1D::k_minFloat) {
|
|
return;
|
|
}
|
|
float centerX = std::isnan(x) || std::isinf(x) ? xCenter() : x;
|
|
float centerY = std::isnan(y) || std::isinf(y) ? yCenter() : y;
|
|
Zoom::SetZoom(ratio, centerX, centerY, &xMi, &xMa, &yMi, &yMa);
|
|
if (!std::isnan(xMi) && !std::isnan(xMa)) {
|
|
setZoomAuto(false);
|
|
m_xRange.setMax(xMa, k_lowerMaxFloat, k_upperMaxFloat);
|
|
MemoizedCurveViewRange::protectedSetXMin(xMi, k_lowerMaxFloat, k_upperMaxFloat);
|
|
}
|
|
if (!std::isnan(yMi) && !std::isnan(yMa)) {
|
|
setZoomAuto(false);
|
|
m_yRange.setMax(yMa, k_lowerMaxFloat, k_upperMaxFloat);
|
|
MemoizedCurveViewRange::protectedSetYMin(yMi, k_lowerMaxFloat, k_upperMaxFloat);
|
|
}
|
|
m_offscreenYAxis *= ratio;
|
|
setZoomNormalize(isOrthonormal());
|
|
}
|
|
|
|
void InteractiveCurveViewRange::panWithVector(float x, float y) {
|
|
if (clipped(xMin() + x, false) != xMin() + x || clipped(xMax() + x, true) != xMax() + x || clipped(yMin() + y, false) != yMin() + y || clipped(yMax() + y, true) != yMax() + y || std::isnan(clipped(xMin() + x, false)) || std::isnan(clipped(xMax() + x, true)) || std::isnan(clipped(yMin() + y, false)) || std::isnan(clipped(yMax() + y, true))) {
|
|
return;
|
|
}
|
|
if (x != 0.f || y != 0.f) {
|
|
setZoomAuto(false);
|
|
}
|
|
m_xRange.setMax(xMax()+x, k_lowerMaxFloat, k_upperMaxFloat);
|
|
MemoizedCurveViewRange::protectedSetXMin(xMin() + x, k_lowerMaxFloat, k_upperMaxFloat);
|
|
m_yRange.setMax(yMax()+y, k_lowerMaxFloat, k_upperMaxFloat);
|
|
MemoizedCurveViewRange::protectedSetYMin(yMin() + y, k_lowerMaxFloat, k_upperMaxFloat);
|
|
}
|
|
|
|
void InteractiveCurveViewRange::normalize(bool forceChangeY) {
|
|
/* We center the ranges on the current range center, and put each axis so that
|
|
* 1cm = 2 current units. */
|
|
|
|
if (isOrthonormal()) {
|
|
return;
|
|
}
|
|
|
|
setZoomAuto(false);
|
|
|
|
float newXMin = xMin(), newXMax = xMax(), newYMin = yMin(), newYMax = yMax();
|
|
|
|
const float unit = std::max(xGridUnit(), yGridUnit());
|
|
const float newXHalfRange = NormalizedXHalfRange(unit);
|
|
const float newYHalfRange = NormalizedYHalfRange(unit);
|
|
float normalizedYXRatio = newYHalfRange/newXHalfRange;
|
|
|
|
/* Most of the time, we do not want to shrink, to avoid hiding parts of the
|
|
* function. However, when forceChangeY is true, we shrink if the Y range is
|
|
* the longer one. */
|
|
bool shrink = forceChangeY && (newYMax - newYMin) / (newXMax - newXMin) > normalizedYXRatio;
|
|
Zoom::SetToRatio(normalizedYXRatio, &newXMin, &newXMax, &newYMin, &newYMax, shrink);
|
|
|
|
m_xRange.setMin(newXMin, k_lowerMaxFloat, k_upperMaxFloat);
|
|
MemoizedCurveViewRange::protectedSetXMax(newXMax, k_lowerMaxFloat, k_upperMaxFloat);
|
|
m_yRange.setMin(newYMin, k_lowerMaxFloat, k_upperMaxFloat);
|
|
MemoizedCurveViewRange::protectedSetYMax(newYMax, k_lowerMaxFloat, k_upperMaxFloat);
|
|
|
|
/* The range should be close to orthonormal, unless :
|
|
* - it has been clipped because the maximum bounds have been reached.
|
|
* - the the bounds are too close and of too large a magnitude, leading to
|
|
* a drastic loss of significance. */
|
|
assert(isOrthonormal()
|
|
|| xMin() <= - k_lowerMaxFloat || xMax() >= k_lowerMaxFloat || yMin() <= - k_lowerMaxFloat || yMax() >= k_lowerMaxFloat
|
|
|| normalizationSignificantBits() <= 0);
|
|
setZoomNormalize(isOrthonormal());
|
|
}
|
|
|
|
void InteractiveCurveViewRange::setDefault() {
|
|
if (m_delegate == nullptr) {
|
|
return;
|
|
}
|
|
|
|
/* If m_zoomNormalize was left active, xGridUnit() would return the value of
|
|
* yGridUnit, even if the ranger were not truly normalized. We use
|
|
* setZoomNormalize to refresh the button in case the graph does not end up
|
|
* normalized. */
|
|
setZoomNormalize(false);
|
|
|
|
// Compute the interesting range
|
|
m_delegate->interestingRanges(this);
|
|
/* If the horizontal bounds are integers, they are preset values and should
|
|
* not be changed. */
|
|
bool isDefaultRange = hasDefaultRange();
|
|
|
|
// Add margins, then round limits.
|
|
float newXMin = xMin(), newXMax = xMax();
|
|
if (!isDefaultRange) {
|
|
float xRange = xMax() - xMin();
|
|
newXMin = roundLimit(m_delegate->addMargin(xMin(), xRange, false, true), xRange, true);
|
|
newXMax = roundLimit(m_delegate->addMargin(xMax(), xRange, false, false), xRange, false);
|
|
}
|
|
m_xRange.setMin(newXMin, k_lowerMaxFloat, k_upperMaxFloat);
|
|
// Use MemoizedCurveViewRange::protectedSetXMax to update xGridUnit
|
|
MemoizedCurveViewRange::protectedSetXMax(newXMax, k_lowerMaxFloat, k_upperMaxFloat);
|
|
float yRange = yMax() - yMin();
|
|
m_yRange.setMin(roundLimit(m_delegate->addMargin(yMin(), yRange, true , true), yRange, true), k_lowerMaxFloat, k_upperMaxFloat);
|
|
MemoizedCurveViewRange::protectedSetYMax(roundLimit(m_delegate->addMargin(yMax(), yRange, true , false), yRange, false), k_lowerMaxFloat, k_upperMaxFloat);
|
|
|
|
if (m_delegate->defaultRangeIsNormalized() || shouldBeNormalized()) {
|
|
/* Normalize the axes, so that a polar circle is displayed as a circle.
|
|
* If we are displaying cartesian functions with a default range, we want
|
|
* the X bounds untouched. */
|
|
normalize(isDefaultRange && !m_delegate->defaultRangeIsNormalized());
|
|
}
|
|
|
|
setZoomAuto(true);
|
|
}
|
|
|
|
void InteractiveCurveViewRange::centerAxisAround(Axis axis, float position) {
|
|
if (std::isnan(position)) {
|
|
return;
|
|
}
|
|
if (axis == Axis::X) {
|
|
float range = xMax() - xMin();
|
|
if (std::fabs(position/range) > k_maxRatioPositionRange) {
|
|
range = Range1D::defaultRangeLengthFor(position);
|
|
}
|
|
float newXMax = position + range/2.0f;
|
|
if (xMax() != newXMax) {
|
|
setZoomAuto(false);
|
|
m_xRange.setMax(newXMax, k_lowerMaxFloat, k_upperMaxFloat);
|
|
MemoizedCurveViewRange::protectedSetXMin(newXMax - range, k_lowerMaxFloat, k_upperMaxFloat);
|
|
}
|
|
} else {
|
|
float range = yMax() - yMin();
|
|
if (std::fabs(position/range) > k_maxRatioPositionRange) {
|
|
range = Range1D::defaultRangeLengthFor(position);
|
|
}
|
|
float newYMax = position + range/2.0f;
|
|
if (yMax() != newYMax) {
|
|
setZoomAuto(false);
|
|
m_yRange.setMax(position + range/2.0f, k_lowerMaxFloat, k_upperMaxFloat);
|
|
MemoizedCurveViewRange::protectedSetYMin(position - range/2.0f, k_lowerMaxFloat, k_upperMaxFloat);
|
|
}
|
|
}
|
|
|
|
setZoomNormalize(isOrthonormal());
|
|
}
|
|
|
|
void InteractiveCurveViewRange::panToMakePointVisible(float x, float y, float topMarginRatio, float rightMarginRatio, float bottomMarginRatio, float leftMarginRatio, float pixelWidth) {
|
|
if (!std::isinf(x) && !std::isnan(x)) {
|
|
const float xRange = xMax() - xMin();
|
|
const float leftMargin = leftMarginRatio * xRange;
|
|
if (x < xMin() + leftMargin) {
|
|
setZoomAuto(false);
|
|
/* The panning increment is a whole number of pixels so that the caching
|
|
* for cartesian functions is not invalidated. */
|
|
const float newXMin = std::floor((x - leftMargin - xMin()) / pixelWidth) * pixelWidth + xMin();
|
|
m_xRange.setMax(newXMin + xRange, k_lowerMaxFloat, k_upperMaxFloat);
|
|
MemoizedCurveViewRange::protectedSetXMin(newXMin, k_lowerMaxFloat, k_upperMaxFloat);
|
|
}
|
|
const float rightMargin = rightMarginRatio * xRange;
|
|
if (x > xMax() - rightMargin) {
|
|
setZoomAuto(false);
|
|
const float newXMax = std::ceil((x + rightMargin - xMax()) / pixelWidth) * pixelWidth + xMax();
|
|
m_xRange.setMax(newXMax, k_lowerMaxFloat, k_upperMaxFloat);
|
|
MemoizedCurveViewRange::protectedSetXMin(xMax() - xRange, k_lowerMaxFloat, k_upperMaxFloat);
|
|
}
|
|
}
|
|
if (!std::isinf(y) && !std::isnan(y)) {
|
|
const float yRange = yMax() - yMin();
|
|
const float bottomMargin = bottomMarginRatio * yRange;
|
|
if (y < yMin() + bottomMargin) {
|
|
setZoomAuto(false);
|
|
const float newYMin = y - bottomMargin;
|
|
m_yRange.setMax(newYMin + yRange, k_lowerMaxFloat, k_upperMaxFloat);
|
|
MemoizedCurveViewRange::protectedSetYMin(newYMin, k_lowerMaxFloat, k_upperMaxFloat);
|
|
}
|
|
const float topMargin = topMarginRatio * yRange;
|
|
if (y > yMax() - topMargin) {
|
|
setZoomAuto(false);
|
|
m_yRange.setMax(y + topMargin, k_lowerMaxFloat, k_upperMaxFloat);
|
|
MemoizedCurveViewRange::protectedSetYMin(yMax() - yRange, k_lowerMaxFloat, k_upperMaxFloat);
|
|
}
|
|
}
|
|
|
|
/* Panning to a point greater than the maximum range of 10^8 could make the
|
|
* graph not normalized.*/
|
|
setZoomNormalize(isOrthonormal());
|
|
}
|
|
|
|
bool InteractiveCurveViewRange::shouldBeNormalized() const {
|
|
float ratio = (yMax() - yMin()) / (xMax() - xMin());
|
|
return ratio >= NormalYXRatio() / k_orthonormalTolerance && ratio <= NormalYXRatio() * k_orthonormalTolerance;
|
|
}
|
|
|
|
bool InteractiveCurveViewRange::isOrthonormal() const {
|
|
int significantBits = normalizationSignificantBits();
|
|
if (significantBits <= 0) {
|
|
return false;
|
|
}
|
|
float ratio = (yMax() - yMin() + offscreenYAxis()) / (xMax() - xMin());
|
|
/* The last N (= 23 - significantBits) bits of "ratio" mantissa have become
|
|
* insignificant. "tolerance" is the difference between ratio with those N
|
|
* bits set to 1, and ratio with those N bits set to 0 ; i.e. a measure of
|
|
* the interval in which numbers are indistinguishable from ratio with this
|
|
* level of precision. */
|
|
float tolerance = std::pow(2.f, IEEE754<float>::exponent(ratio) - significantBits);
|
|
return ratio - tolerance <= NormalYXRatio() && ratio + tolerance >= NormalYXRatio();
|
|
}
|
|
|
|
int InteractiveCurveViewRange::normalizationSignificantBits() const {
|
|
float xr = std::fabs(xMin()) > std::fabs(xMax()) ? xMax() / xMin() : xMin() / xMax();
|
|
float yr = std::fabs(yMin()) > std::fabs(yMax()) ? yMax() / yMin() : yMin() / yMax();
|
|
/* The subtraction x - y induces a loss of significance of -log2(1-x/y)
|
|
* bits. Since normalizing requires computing xMax - xMin and yMax - yMin,
|
|
* the ratio of the normalized range will deviate from the Normal ratio. We
|
|
* add an extra two lost bits to account for loss of precision from other
|
|
* sources. */
|
|
float loss = std::log2(std::min(1.f - xr, 1.f - yr));
|
|
if (loss > 0.f) {
|
|
loss = 0.f;
|
|
}
|
|
return std::floor(loss + 23.f - 2.f);
|
|
}
|
|
|
|
}
|