Files
Upsilon/apps/shared/sequence.cpp
2020-12-17 17:10:56 +01:00

409 lines
17 KiB
C++

#include "sequence.h"
#include "sequence_cache_context.h"
#include "sequence_store.h"
#include <poincare/layout_helper.h>
#include <poincare/serialization_helper.h>
#include <poincare/code_point_layout.h>
#include <poincare/sum.h>
#include <poincare/vertical_offset_layout.h>
#include <poincare/integer.h>
#include <poincare/rational.h>
#include <poincare/addition.h>
#include <poincare/zoom.h>
#include "../shared/poincare_helpers.h"
#include <string.h>
#include <apps/i18n.h>
#include <cmath>
using namespace Poincare;
namespace Shared {
I18n::Message Sequence::parameterMessageName() const {
return I18n::Message::N;
}
int Sequence::nameWithArgument(char * buffer, size_t bufferSize) {
int seqNameSize = name(buffer, bufferSize);
assert(seqNameSize > 0);
size_t result = seqNameSize;
assert(result <= bufferSize);
buffer[result++] = '(';
assert(result <= bufferSize);
assert(UTF8Decoder::CharSizeOfCodePoint(symbol()) <= 2);
result += UTF8Decoder::CodePointToChars(symbol(), buffer+result, bufferSize-result);
assert(result <= bufferSize);
result += strlcpy(buffer+result, ")", bufferSize-result);
return result;
}
int Sequence::nameWithArgumentAndType(char * buffer, size_t bufferSize) {
int result = nameWithArgument(buffer, bufferSize);
assert(result >= 1);
int offset = result - 1;
switch (type())
{
case Type::SingleRecurrence:
result += strlcpy(buffer+offset, "+1)", bufferSize-offset);
break;
case Type::DoubleRecurrence:
result += strlcpy(buffer+offset, "+2)", bufferSize-offset);
break;
default:
break;
}
return result;
}
Sequence::Type Sequence::type() const {
return recordData()->type();
}
int Sequence::initialRank() const {
return recordData()->initialRank();
}
void Sequence::setType(Type t) {
if (t == type()) {
return;
}
if (type() == Type::Explicit) {
setInitialRank(0);
}
recordData()->setType(t);
m_definition.tidyName();
tidy();
/* Reset all contents */
switch (t) {
case Type::Explicit:
setContent("", nullptr); // No context needed here
break;
case Type::SingleRecurrence:
{
char ex[5] = "u(n)";
ex[0] = fullName()[0];
setContent(ex, nullptr); // No context needed here
break;
}
case Type::DoubleRecurrence:
{
char ex[12] = "u(n+1)+u(n)";
char name = fullName()[0];
ex[0] = name;
ex[7] = name;
setContent(ex, nullptr); // No context needed here
break;
}
}
setFirstInitialConditionContent("", nullptr); // No context needed here
setSecondInitialConditionContent("", nullptr); // No context needed here
}
void Sequence::setInitialRank(int rank) {
recordData()->setInitialRank(rank);
m_firstInitialCondition.tidyName();
m_secondInitialCondition.tidyName();
}
Poincare::Layout Sequence::nameLayout() {
return HorizontalLayout::Builder(
CodePointLayout::Builder(fullName()[0], KDFont::SmallFont),
VerticalOffsetLayout::Builder(CodePointLayout::Builder(symbol(), KDFont::SmallFont), VerticalOffsetLayoutNode::Position::Subscript)
);
}
bool Sequence::isDefined() {
RecordDataBuffer * data = recordData();
switch (type()) {
case Type::Explicit:
return value().size > metaDataSize();
case Type::SingleRecurrence:
return data->initialConditionSize(0) > 0 && value().size > metaDataSize() + data->initialConditionSize(0);
default:
return data->initialConditionSize(0) > 0 && data->initialConditionSize(1) > 0 && value().size > metaDataSize() + data->initialConditionSize(0) + data->initialConditionSize(1);
}
}
bool Sequence::isEmpty() {
RecordDataBuffer * data = recordData();
Type type = data->type();
return Function::isEmpty() &&
(type == Type::Explicit ||
(data->initialConditionSize(0) == 0 &&
(type == Type::SingleRecurrence || data->initialConditionSize(1) == 0)));
}
bool Sequence::badlyReferencesItself(Context * context) {
Expression e = expressionReduced(context);
bool value = e.hasExpression([](Expression e, const void * sequencePointer) {
if (e.type() != ExpressionNode::Type::Sequence) {
return false;
}
Sequence * seq = (Sequence *)(sequencePointer);
const char * symbolName = static_cast<Symbol&>(e).name();
/* symbolName is either u, v or w while seq->fullName has the extention .seq
* at the end. Therefore we cannot use strcmp on the two strings. We just
* want to check if the first char are identical*/
if (strncmp(symbolName, seq->fullName(), strlen(symbolName)) == 0) {
/* The expression of the sequence contains a reference to itself.
* We must check if the sequence can be calculated before continuing
* If the sequence is of explicit type, it cannot reference itself.
* If the sequence is of SingleRecurrent type, it can be defined by:
* u(initialRank and u(n).
* If the sequence is of DoubleRecurrent type, it can be defined by:
* u(initialRank), u(initialRank+1), u(n) and u(n+1).
* In any other case, the value of the sequence cannot be computed.
* We therefore return NAN. */
Expression rank = e.childAtIndex(0);
if (seq->type() == Sequence::Type::Explicit ||
(!(rank.isIdenticalTo(Rational::Builder(seq->initialRank())) || rank.isIdenticalTo(Symbol::Builder(UCodePointUnknown))) &&
(seq->type() == Sequence::Type::SingleRecurrence || (seq->type() == Sequence::Type::DoubleRecurrence && !(rank.isIdenticalTo(Rational::Builder(seq->initialRank()+1)) || rank.isIdenticalTo(Addition::Builder(Symbol::Builder(UCodePointUnknown), Rational::Builder(1))))))))
{
return true;
}
}
return false;
}, reinterpret_cast<const void *>(this));
return value;
}
template<typename T>
T Sequence::templatedApproximateAtAbscissa(T x, SequenceContext * sqctx) const {
T n = std::round(x);
int sequenceIndex = SequenceStore::sequenceIndexForName(fullName()[0]);
if (sqctx->iterateUntilRank<T>(n)) {
return sqctx->valueOfCommonRankSequenceAtPreviousRank<T>(sequenceIndex, 0);
}
return NAN;
}
template<typename T>
T Sequence::valueAtRank(int n, SequenceContext *sqctx) {
if (n < 0 || badlyReferencesItself(sqctx)) {
return NAN;
}
int sequenceIndex = SequenceStore::sequenceIndexForName(fullName()[0]);
if (sqctx->independentSequenceRank<T>(sequenceIndex) > n || sqctx->independentSequenceRank<T>(sequenceIndex) < 0) {
// Reset cache indexes and cache values
sqctx->setIndependentSequenceRank<T>(-1, sequenceIndex);
for (int i = 0 ; i < MaxRecurrenceDepth+1; i++) {
sqctx->setIndependentSequenceValue<T>(NAN, sequenceIndex, i);
}
}
while(sqctx->independentSequenceRank<T>(sequenceIndex) < n) {
sqctx->stepSequenceAtIndex<T>(sequenceIndex);
}
/* In case we have sqctx->independentSequenceRank<T>(sequenceIndex) = n, we can return the
* value */
T value = sqctx->independentSequenceValue<T>(sequenceIndex, 0);
return value;
}
template<typename T>
T Sequence::approximateToNextRank(int n, SequenceContext * sqctx, int sequenceIndex) const {
if (n < initialRank() || n < 0) {
return NAN;
}
constexpr int bufferSize = CodePoint::MaxCodePointCharLength + 1;
char unknownN[bufferSize];
Poincare::SerializationHelper::CodePoint(unknownN, bufferSize, UCodePointUnknown);
SequenceCacheContext<T> ctx = SequenceCacheContext<T>(sqctx);
// Hold values u(n), u(n-1), u(n-2), v(n), v(n-1), v(n-2)...
T values[MaxNumberOfSequences][MaxRecurrenceDepth+1];
/* In case we step only one sequence to the next step, the data stored in
* values is not necessarily u(n), u(n-1).... Indeed, since the indexes are
* independent, if the index for u is 3 but the one for v is 5, value will
* hold u(3), u(2), u(1) | v(5), v(4), v(3). Therefore, the calculation will
* be wrong if they relay on a symbol such as u(n). To prevent this, we align
* all the values around the index of the sequence we are stepping. */
int independentRank = sqctx->independentSequenceRank<T>(sequenceIndex);
for (int i = 0; i < MaxNumberOfSequences; i++) {
if (sequenceIndex != -1 && sqctx->independentSequenceRank<T>(i) != independentRank) {
int offset = independentRank - sqctx->independentSequenceRank<T>(i);
if (offset != 0) {
for (int j = MaxRecurrenceDepth; j >= 0; j--) {
values[i][j] = j-offset < 0 || j-offset > MaxRecurrenceDepth ? NAN : sqctx->independentSequenceValue<T>(i, j-offset);
}
}
} else {
for (int j = 0; j < MaxRecurrenceDepth+1; j++) {
values[i][j] = sequenceIndex != -1 ? sqctx->independentSequenceValue<T>(i, j) : sqctx->valueOfCommonRankSequenceAtPreviousRank<T>(i, j);
}
}
}
// Hold symbols u(n), u(n+1), v(n), v(n+1), w(n), w(n+1)
Poincare::Symbol symbols[MaxNumberOfSequences][MaxRecurrenceDepth];
char name[MaxRecurrenceDepth][7] = {"0(n)","0(n+1)"};
for (int i = 0; i < MaxNumberOfSequences; i++) {
for (int j = 0; j < MaxRecurrenceDepth; j++) {
name[j][0] = SequenceStore::k_sequenceNames[i][0];
symbols[i][j] = Symbol::Builder(name[j], strlen(name[j]));
}
}
switch (type()) {
case Type::Explicit:
{
for (int i = 0; i < MaxNumberOfSequences; i++) {
// Set in context u(n) = u(n) for all sequences
ctx.setValueForSymbol(values[i][0], symbols[i][0]);
}
return PoincareHelpers::ApproximateWithValueForSymbol(expressionReduced(sqctx), unknownN, (T)n, &ctx);
}
case Type::SingleRecurrence:
{
if (n == initialRank()) {
return PoincareHelpers::ApproximateWithValueForSymbol(firstInitialConditionExpressionReduced(sqctx), unknownN, (T)NAN, &ctx);
}
for (int i = 0; i < MaxNumberOfSequences; i++) {
// Set in context u(n) = u(n-1) and u(n+1) = u(n) for all sequences
ctx.setValueForSymbol(values[i][0], symbols[i][1]);
ctx.setValueForSymbol(values[i][1], symbols[i][0]);
}
return PoincareHelpers::ApproximateWithValueForSymbol(expressionReduced(sqctx), unknownN, (T)(n-1), &ctx);
}
default:
{
if (n == initialRank()) {
return PoincareHelpers::ApproximateWithValueForSymbol(firstInitialConditionExpressionReduced(sqctx), unknownN, (T)NAN, &ctx);
}
if (n == initialRank()+1) {
return PoincareHelpers::ApproximateWithValueForSymbol(secondInitialConditionExpressionReduced(sqctx), unknownN, (T)NAN, &ctx);
}
for (int i = 0; i < MaxNumberOfSequences; i++) {
// Set in context u(n) = u(n-2) and u(n+1) = u(n-1) for all sequences
ctx.setValueForSymbol(values[i][1], symbols[i][1]);
ctx.setValueForSymbol(values[i][2], symbols[i][0]);
}
return PoincareHelpers::ApproximateWithValueForSymbol(expressionReduced(sqctx), unknownN, (T)(n-2), &ctx);
}
}
}
Expression Sequence::sumBetweenBounds(double start, double end, Poincare::Context * context) const {
/* Here, we cannot just create the expression sum(u(n), start, end) because
* the approximation of u(n) is not handled by Poincare (but only by
* Sequence). */
double result = 0.0;
if (end-start > ExpressionNode::k_maxNumberOfSteps || start + 1.0 == start) {
return Float<double>::Builder(NAN);
}
start = std::round(start);
end = std::round(end);
for (double i = start; i <= end; i = i + 1.0) {
/* When |start| >> 1.0, start + 1.0 = start. In that case, quit the
* infinite loop. */
if (i == i-1.0 || i == i+1.0) {
return Float<double>::Builder(NAN);
}
result += evaluateXYAtParameter(i, context).x2();
}
return Float<double>::Builder(result);
}
void Sequence::rangeForDisplay(float * xMin, float * xMax, float * yMin, float * yMax, float targetRatio, Poincare::Context * context) const {
Poincare::Zoom::ValueAtAbscissa evaluation = [](float x, Poincare::Context * context, const void * auxiliary) {
return static_cast<float>(static_cast<const Shared::Sequence *>(auxiliary)->initialRank());
};
Poincare::Zoom::FullRange(evaluation, 0, 1, 1, xMin, xMax, context, this);
*xMax += Poincare::Zoom::k_defaultHalfRange;
protectedFullRangeForDisplay(*xMin, *xMax, 1.f, yMin, yMax, context, false);
}
Sequence::RecordDataBuffer * Sequence::recordData() const {
assert(!isNull());
Ion::Storage::Record::Data d = value();
return reinterpret_cast<RecordDataBuffer *>(const_cast<void *>(d.buffer));
}
/* Sequence Model */
Poincare::Layout Sequence::SequenceModel::name(Sequence * sequence) {
if (m_name.isUninitialized()) {
buildName(sequence);
}
return m_name;
}
void Sequence::SequenceModel::updateNewDataWithExpression(Ion::Storage::Record * record, const Expression & expressionToStore, void * expressionAddress, size_t newExpressionSize, size_t previousExpressionSize) {
Ion::Storage::Record::Data newData = record->value();
// Translate expressions located downstream
size_t sizeBeforeExpression = (char *)expressionAddress -(char *)newData.buffer;
size_t remainingSize = newData.size - sizeBeforeExpression - previousExpressionSize;
memmove((char *)expressionAddress + newExpressionSize, (char *)expressionAddress + previousExpressionSize, remainingSize);
// Copy the expression
if (!expressionToStore.isUninitialized()) {
memmove(expressionAddress, expressionToStore.addressInPool(), newExpressionSize);
}
// Update meta data
updateMetaData(record, newExpressionSize);
}
/* Definition Handle*/
void * Sequence::DefinitionModel::expressionAddress(const Ion::Storage::Record * record) const {
return (char *)record->value().buffer+sizeof(RecordDataBuffer);
}
size_t Sequence::DefinitionModel::expressionSize(const Ion::Storage::Record * record) const {
Ion::Storage::Record::Data data = record->value();
RecordDataBuffer * dataBuffer = static_cast<const Sequence *>(record)->recordData();
return data.size-sizeof(RecordDataBuffer) - dataBuffer->initialConditionSize(0) - dataBuffer->initialConditionSize(1);
}
void Sequence::DefinitionModel::buildName(Sequence * sequence) {
char name = sequence->fullName()[0];
if (sequence->type() == Type::Explicit) {
m_name = HorizontalLayout::Builder(
CodePointLayout::Builder(name, k_layoutFont),
VerticalOffsetLayout::Builder(LayoutHelper::String("n", 1, k_layoutFont), VerticalOffsetLayoutNode::Position::Subscript));
} else if (sequence->type() == Type::SingleRecurrence) {
m_name = HorizontalLayout::Builder(
CodePointLayout::Builder(name, k_layoutFont),
VerticalOffsetLayout::Builder(LayoutHelper::String("n+1", 3, k_layoutFont), VerticalOffsetLayoutNode::Position::Subscript));
} else {
assert(sequence->type() == Type::DoubleRecurrence);
m_name = HorizontalLayout::Builder(
CodePointLayout::Builder(name, k_layoutFont),
VerticalOffsetLayout::Builder(LayoutHelper::String("n+2", 3, k_layoutFont), VerticalOffsetLayoutNode::Position::Subscript));
}
}
/* Initial Condition Handle*/
void * Sequence::InitialConditionModel::expressionAddress(const Ion::Storage::Record * record) const {
Ion::Storage::Record::Data data = record->value();
RecordDataBuffer * dataBuffer = static_cast<const Sequence *>(record)->recordData();
size_t offset = conditionIndex() == 0 ? data.size - dataBuffer->initialConditionSize(0) - dataBuffer->initialConditionSize(1) : data.size - dataBuffer->initialConditionSize(1) ;
return (char *)data.buffer+offset;
}
size_t Sequence::InitialConditionModel::expressionSize(const Ion::Storage::Record * record) const {
return static_cast<const Sequence *>(record)->recordData()->initialConditionSize(conditionIndex());
}
void Sequence::InitialConditionModel::updateMetaData(const Ion::Storage::Record * record, size_t newSize) {
static_cast<const Sequence *>(record)->recordData()->setInitialConditionSize(newSize, conditionIndex());
}
void Sequence::InitialConditionModel::buildName(Sequence * sequence) {
assert((conditionIndex() == 0 && sequence->type() == Type::SingleRecurrence) || sequence->type() == Type::DoubleRecurrence);
char buffer[k_initialRankNumberOfDigits+1];
Integer(sequence->initialRank()+conditionIndex()).serialize(buffer, k_initialRankNumberOfDigits+1);
Layout indexLayout = LayoutHelper::String(buffer, strlen(buffer), k_layoutFont);
m_name = HorizontalLayout::Builder(
CodePointLayout::Builder(sequence->fullName()[0], k_layoutFont),
VerticalOffsetLayout::Builder(indexLayout, VerticalOffsetLayoutNode::Position::Subscript));
}
template double Sequence::templatedApproximateAtAbscissa<double>(double, SequenceContext*) const;
template float Sequence::templatedApproximateAtAbscissa<float>(float, SequenceContext*) const;
template double Sequence::approximateToNextRank<double>(int, SequenceContext*, int) const;
template float Sequence::approximateToNextRank<float>(int, SequenceContext*, int) const;
template double Sequence::valueAtRank<double>(int, SequenceContext *);
template float Sequence::valueAtRank<float>(int, SequenceContext *);
}