mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-18 16:27:34 +01:00
460 lines
24 KiB
C++
460 lines
24 KiB
C++
#include "equation_store.h"
|
||
#include "../constant.h"
|
||
#include "../shared/poincare_helpers.h"
|
||
#include "../exam_mode_configuration.h"
|
||
#include "../global_preferences.h"
|
||
#include <limits.h>
|
||
|
||
#include <poincare/constant.h>
|
||
#include <poincare/symbol.h>
|
||
#include <poincare/matrix.h>
|
||
#include <poincare/rational.h>
|
||
#include <poincare/opposite.h>
|
||
#include <poincare/addition.h>
|
||
#include <poincare/subtraction.h>
|
||
#include <poincare/multiplication.h>
|
||
#include <poincare/division.h>
|
||
#include <poincare/square_root.h>
|
||
#include <poincare/power.h>
|
||
#include <poincare/undefined.h>
|
||
|
||
using namespace Poincare;
|
||
using namespace Shared;
|
||
|
||
namespace Solver {
|
||
|
||
EquationStore::EquationStore() :
|
||
ExpressionModelStore(),
|
||
m_type(Type::LinearSystem),
|
||
m_numberOfSolutions(0),
|
||
m_exactSolutionExactLayouts{},
|
||
m_exactSolutionApproximateLayouts{},
|
||
m_numberOfUserVariables(0)
|
||
{
|
||
}
|
||
|
||
Ion::Storage::Record::ErrorStatus EquationStore::addEmptyModel() {
|
||
char name[3] = {'e', '?', 0}; // name is going to be e0 or e1 or ... e5
|
||
int currentNumber = 0;
|
||
while (currentNumber < k_maxNumberOfEquations) {
|
||
name[1] = '0'+currentNumber;
|
||
if (Ion::Storage::sharedStorage()->recordBaseNamedWithExtension(name, Ion::Storage::eqExtension).isNull()) {
|
||
break;
|
||
}
|
||
currentNumber++;
|
||
}
|
||
assert(currentNumber < k_maxNumberOfEquations);
|
||
return Ion::Storage::sharedStorage()->createRecordWithExtension(name, Ion::Storage::eqExtension, nullptr, 0);
|
||
}
|
||
|
||
Shared::ExpressionModelHandle * EquationStore::setMemoizedModelAtIndex(int cacheIndex, Ion::Storage::Record record) const {
|
||
assert(cacheIndex >= 0 && cacheIndex < maxNumberOfMemoizedModels());
|
||
m_equations[cacheIndex] = Equation(record);
|
||
return &m_equations[cacheIndex];
|
||
}
|
||
|
||
ExpressionModelHandle * EquationStore::memoizedModelAtIndex(int cacheIndex) const {
|
||
assert(cacheIndex >= 0 && cacheIndex < maxNumberOfMemoizedModels());
|
||
return &m_equations[cacheIndex];
|
||
}
|
||
|
||
void EquationStore::tidy() {
|
||
ExpressionModelStore::tidy();
|
||
tidySolution();
|
||
}
|
||
|
||
Poincare::Layout EquationStore::exactSolutionLayoutAtIndex(int i, bool exactLayout) {
|
||
assert(m_type != Type::Monovariable && i >= 0 && (i < m_numberOfSolutions));
|
||
if (exactLayout) {
|
||
return m_exactSolutionExactLayouts[i];
|
||
} else {
|
||
return m_exactSolutionApproximateLayouts[i];
|
||
}
|
||
}
|
||
|
||
double EquationStore::intervalBound(int index) const {
|
||
assert(m_type == Type::Monovariable && index >= 0 && index < 2);
|
||
return m_intervalApproximateSolutions[index];
|
||
}
|
||
|
||
void EquationStore::setIntervalBound(int index, double value) {
|
||
assert(m_type == Type::Monovariable && index >= 0 && index < 2);
|
||
m_intervalApproximateSolutions[index] = value;
|
||
if (m_intervalApproximateSolutions[0] > m_intervalApproximateSolutions[1]) {
|
||
if (index == 0) {
|
||
m_intervalApproximateSolutions[1] = m_intervalApproximateSolutions[0]+1;
|
||
} else {
|
||
m_intervalApproximateSolutions[0] = m_intervalApproximateSolutions[1]-1;
|
||
}
|
||
}
|
||
}
|
||
|
||
void EquationStore::approximateSolve(Poincare::Context * context, bool shouldReplaceFunctionsButNotSymbols) {
|
||
m_hasMoreThanMaxNumberOfApproximateSolution = false;
|
||
Expression undevelopedExpression = modelForRecord(definedRecordAtIndex(0))->standardForm(context, shouldReplaceFunctionsButNotSymbols, ExpressionNode::ReductionTarget::SystemForApproximation);
|
||
m_userVariablesUsed = !shouldReplaceFunctionsButNotSymbols;
|
||
assert(m_variables[0][0] != 0 && m_variables[1][0] == 0);
|
||
assert(m_type == Type::Monovariable);
|
||
m_numberOfSolutions = 0;
|
||
double start = m_intervalApproximateSolutions[0];
|
||
double step = (m_intervalApproximateSolutions[1]-m_intervalApproximateSolutions[0])*k_precision;
|
||
double root;
|
||
for (int i = 0; i <= k_maxNumberOfApproximateSolutions; i++) {
|
||
root = PoincareHelpers::NextRoot(undevelopedExpression, m_variables[0], start, step, m_intervalApproximateSolutions[1], context);
|
||
if (i == k_maxNumberOfApproximateSolutions) {
|
||
m_hasMoreThanMaxNumberOfApproximateSolution = !std::isnan(root);
|
||
break;
|
||
}
|
||
m_approximateSolutions[i] = root;
|
||
if (std::isnan(m_approximateSolutions[i])) {
|
||
break;
|
||
} else {
|
||
start = m_approximateSolutions[i];
|
||
m_numberOfSolutions++;
|
||
}
|
||
}
|
||
}
|
||
|
||
EquationStore::Error EquationStore::exactSolve(Poincare::Context * context, bool * replaceFunctionsButNotSymbols) {
|
||
assert(replaceFunctionsButNotSymbols != nullptr);
|
||
*replaceFunctionsButNotSymbols = false;
|
||
Error e = privateExactSolve(context, false);
|
||
if (m_numberOfUserVariables > 0 && (e != Error::NoError || numberOfSolutions() == 0)) {
|
||
*replaceFunctionsButNotSymbols = true;
|
||
e = privateExactSolve(context, true);
|
||
}
|
||
return e;
|
||
}
|
||
|
||
/* Equations are solved according to the following procedure :
|
||
* 1) We develop the equations using the reduction target "SystemForAnalysis".
|
||
* This expands structures like Newton multinoms and allows us to detect
|
||
* polynoms afterwards. ("(x+2)^2" in this form is not detected but is if
|
||
* expanded).
|
||
* 2) We look for classic forms of equations for which we have algorithms
|
||
* that output the exact answer. If one is recognized in the input equation,
|
||
* the exact answer is given to the user.
|
||
* 3) If no classic form has been found in the developped form, we need to use
|
||
* numerical approximation. Therefore, to prevent precision losses, we work
|
||
* with the undeveloped form of the equation. Therefore we set reductionTarget
|
||
* to SystemForApproximation. Solutions are then numerically approximated
|
||
* between the bounds provided by the user. */
|
||
|
||
EquationStore::Error EquationStore::privateExactSolve(Poincare::Context * context, bool replaceFunctionsButNotSymbols) {
|
||
tidySolution();
|
||
|
||
m_userVariablesUsed = !replaceFunctionsButNotSymbols;
|
||
|
||
// Step 1. Get unknown and user-defined variables
|
||
m_variables[0][0] = 0;
|
||
int numberOfVariables = 0;
|
||
|
||
// TODO we look twice for variables but not the same, is there a way to not do the same work twice?
|
||
m_userVariables[0][0] = 0;
|
||
m_numberOfUserVariables = 0;
|
||
Expression simplifiedExpressions[k_maxNumberOfEquations];
|
||
|
||
for (int i = 0; i < numberOfDefinedModels(); i++) {
|
||
Shared::ExpiringPointer<Equation> eq = modelForRecord(definedRecordAtIndex(i));
|
||
|
||
/* Start by looking for user variables, so that if we escape afterwards, we
|
||
* know if it might be due to a user variable. */
|
||
if (m_numberOfUserVariables < Expression::k_maxNumberOfVariables) {
|
||
const Expression eWithSymbols = eq->standardForm(context, true, ExpressionNode::ReductionTarget::SystemForAnalysis);
|
||
/* if replaceFunctionsButNotSymbols is true we can memoize the expressions
|
||
* for the rest of the function. Otherwise, we will memoize them at the
|
||
* next call to standardForm*/
|
||
if (replaceFunctionsButNotSymbols == true) {
|
||
simplifiedExpressions[i] = eWithSymbols;
|
||
}
|
||
int varCount = eWithSymbols.getVariables(context, [](const char * symbol, Poincare::Context * context) { return context->expressionTypeForIdentifier(symbol, strlen(symbol)) == Poincare::Context::SymbolAbstractType::Symbol; }, (char *)m_userVariables, Poincare::SymbolAbstract::k_maxNameSize, m_numberOfUserVariables);
|
||
m_numberOfUserVariables = varCount < 0 ? Expression::k_maxNumberOfVariables : varCount;
|
||
}
|
||
if (simplifiedExpressions[i].isUninitialized()) {
|
||
// The expression was not memoized before.
|
||
simplifiedExpressions[i] = eq->standardForm(context, replaceFunctionsButNotSymbols, ExpressionNode::ReductionTarget::SystemForAnalysis);
|
||
}
|
||
const Expression e = simplifiedExpressions[i];
|
||
if (e.isUninitialized() || e.type() == ExpressionNode::Type::Undefined || e.recursivelyMatches(Expression::IsMatrix, context, replaceFunctionsButNotSymbols ? ExpressionNode::SymbolicComputation::ReplaceDefinedFunctionsWithDefinitions : ExpressionNode::SymbolicComputation::ReplaceAllDefinedSymbolsWithDefinition)) {
|
||
return Error::EquationUndefined;
|
||
}
|
||
if (e.type() == ExpressionNode::Type::Unreal) {
|
||
return Error::EquationUnreal;
|
||
}
|
||
numberOfVariables = e.getVariables(context, [](const char * symbol, Poincare::Context * context) { return true; }, (char *)m_variables, Poincare::SymbolAbstract::k_maxNameSize, numberOfVariables);
|
||
if (numberOfVariables == -1) {
|
||
return Error::TooManyVariables;
|
||
}
|
||
/* The equation has been parsed so there should be no
|
||
* Error::VariableNameTooLong*/
|
||
assert(numberOfVariables >= 0);
|
||
}
|
||
|
||
// Step 2. Linear System?
|
||
|
||
/* Create matrix coefficients and vector constants as:
|
||
* coefficients * (x y z ...) = constants */
|
||
Expression coefficients[k_maxNumberOfEquations][Expression::k_maxNumberOfVariables];
|
||
Expression constants[k_maxNumberOfEquations];
|
||
bool isLinear = true; // Invalid the linear system if one equation is non-linear
|
||
Preferences * preferences = Preferences::sharedPreferences();
|
||
for (int i = 0; i < numberOfDefinedModels(); i++) {
|
||
isLinear = isLinear && simplifiedExpressions[i].getLinearCoefficients((char *)m_variables, Poincare::SymbolAbstract::k_maxNameSize, coefficients[i], &constants[i], context, updatedComplexFormat(context), preferences->angleUnit(), GlobalPreferences::sharedGlobalPreferences()->unitFormat(), replaceFunctionsButNotSymbols ? ExpressionNode::SymbolicComputation::ReplaceDefinedFunctionsWithDefinitions : ExpressionNode::SymbolicComputation::ReplaceAllDefinedSymbolsWithDefinition);
|
||
if (!isLinear) {
|
||
// TODO: should we clean pool allocated memory if the system is not linear
|
||
#if 0
|
||
for (int j = 0; j < i; j++) {
|
||
for (int k = 0; k < numberOfVariables; k++) {
|
||
coefficients[j][k] = Expression();
|
||
}
|
||
constants[j] = Expression();
|
||
}
|
||
#endif
|
||
if (numberOfDefinedModels() > 1 || numberOfVariables > 1) {
|
||
return Error::NonLinearSystem;
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Initialize result
|
||
Expression exactSolutions[k_maxNumberOfExactSolutions];
|
||
Expression exactSolutionsApproximations[k_maxNumberOfExactSolutions];
|
||
EquationStore::Error error;
|
||
|
||
if (isLinear) {
|
||
m_type = Type::LinearSystem;
|
||
error = resolveLinearSystem(exactSolutions, exactSolutionsApproximations, coefficients, constants, context);
|
||
} else {
|
||
// Step 3. Polynomial & Monovariable?
|
||
assert(numberOfVariables == 1 && numberOfDefinedModels() == 1);
|
||
Expression polynomialCoefficients[Expression::k_maxNumberOfPolynomialCoefficients];
|
||
int degree = simplifiedExpressions[0]
|
||
.getPolynomialReducedCoefficients(
|
||
m_variables[0],
|
||
polynomialCoefficients,
|
||
context,
|
||
updatedComplexFormat(context),
|
||
preferences->angleUnit(),
|
||
GlobalPreferences::sharedGlobalPreferences()->unitFormat(),
|
||
replaceFunctionsButNotSymbols ?
|
||
ExpressionNode::SymbolicComputation::ReplaceDefinedFunctionsWithDefinitions :
|
||
ExpressionNode::SymbolicComputation::ReplaceAllDefinedSymbolsWithDefinition);
|
||
if (degree == 2) {
|
||
// Polynomial degree <= 2
|
||
m_type = Type::PolynomialMonovariable;
|
||
error = oneDimensionalPolynomialSolve(exactSolutions, exactSolutionsApproximations, polynomialCoefficients, degree, context);
|
||
} else {
|
||
// Step 4. Monovariable non-polynomial or polynomial with degree > 2
|
||
m_type = Type::Monovariable;
|
||
m_intervalApproximateSolutions[0] = -10;
|
||
m_intervalApproximateSolutions[1] = 10;
|
||
return Error::RequireApproximateSolution;
|
||
}
|
||
}
|
||
// Create the results' layouts
|
||
// Some exam mode configuration requires to display only approximate solutions
|
||
bool forbidExactSolutions = ExamModeConfiguration::exactExpressionsAreForbidden(GlobalPreferences::sharedGlobalPreferences()->examMode());
|
||
int solutionIndex = 0;
|
||
int initialNumberOfSolutions = m_numberOfSolutions <= k_maxNumberOfExactSolutions ? m_numberOfSolutions : -1;
|
||
// We iterate through the solutions and the potential delta
|
||
for (int i = 0; i < initialNumberOfSolutions; i++) {
|
||
if (!exactSolutions[i].isUninitialized()) {
|
||
assert(!exactSolutionsApproximations[i].isUninitialized());
|
||
if (exactSolutionsApproximations[i].type() == ExpressionNode::Type::Unreal) {
|
||
// Discard unreal solutions.
|
||
m_numberOfSolutions--;
|
||
continue;
|
||
}
|
||
m_exactSolutionExactLayouts[solutionIndex] = PoincareHelpers::CreateLayout(exactSolutions[i]);
|
||
m_exactSolutionApproximateLayouts[solutionIndex] = PoincareHelpers::CreateLayout(exactSolutionsApproximations[i]);
|
||
// Check for identity between exact and approximate layouts
|
||
char exactBuffer[::Constant::MaxSerializedExpressionSize];
|
||
char approximateBuffer[::Constant::MaxSerializedExpressionSize];
|
||
m_exactSolutionExactLayouts[solutionIndex].serializeForParsing(exactBuffer, ::Constant::MaxSerializedExpressionSize);
|
||
m_exactSolutionApproximateLayouts[solutionIndex].serializeForParsing(approximateBuffer, ::Constant::MaxSerializedExpressionSize);
|
||
/* Cheat: declare exact and approximate solutions to be identical in when
|
||
* 'forbidExactSolutions' is true to display only the approximate
|
||
* solutions. */
|
||
m_exactSolutionIdentity[solutionIndex] = forbidExactSolutions || strcmp(exactBuffer, approximateBuffer) == 0;
|
||
if (!m_exactSolutionIdentity[solutionIndex]) {
|
||
m_exactSolutionEquality[solutionIndex] = Expression::ParsedExpressionsAreEqual(exactBuffer, approximateBuffer, context, updatedComplexFormat(context), preferences->angleUnit(), GlobalPreferences::sharedGlobalPreferences()->unitFormat());
|
||
}
|
||
solutionIndex++;
|
||
}
|
||
}
|
||
return error;
|
||
}
|
||
|
||
EquationStore::Error EquationStore::resolveLinearSystem(Expression exactSolutions[k_maxNumberOfExactSolutions], Expression exactSolutionsApproximations[k_maxNumberOfExactSolutions], Expression coefficients[k_maxNumberOfEquations][Expression::k_maxNumberOfVariables], Expression constants[k_maxNumberOfEquations], Context * context) {
|
||
Preferences::AngleUnit angleUnit = Preferences::sharedPreferences()->angleUnit();
|
||
Preferences::UnitFormat unitFormat = GlobalPreferences::sharedGlobalPreferences()->unitFormat();
|
||
// n unknown variables
|
||
int n = 0;
|
||
while (n < Expression::k_maxNumberOfVariables && m_variables[n][0] != 0) {
|
||
n++;
|
||
}
|
||
int m = numberOfDefinedModels(); // m equations
|
||
/* Create the matrix (A | b) for the equation Ax=b */
|
||
Matrix Ab = Matrix::Builder();
|
||
for (int i = 0; i < m; i++) {
|
||
for (int j = 0; j < n; j++) {
|
||
Ab.addChildAtIndexInPlace(coefficients[i][j], Ab.numberOfChildren(), Ab.numberOfChildren());
|
||
}
|
||
Ab.addChildAtIndexInPlace(constants[i], Ab.numberOfChildren(), Ab.numberOfChildren());
|
||
}
|
||
Ab.setDimensions(m, n+1);
|
||
|
||
// Compute the rank of (A | b)
|
||
int rankAb = Ab.rank(context, updatedComplexFormat(context), angleUnit, unitFormat, true);
|
||
|
||
// Initialize the number of solutions
|
||
m_numberOfSolutions = INT_MAX;
|
||
/* If the matrix has one null row except the last column, the system is
|
||
* inconsistent (equivalent to 0 = x with x non-null */
|
||
for (int j = m-1; j >= 0; j--) {
|
||
bool rowWithNullCoefficients = true;
|
||
for (int i = 0; i < n; i++) {
|
||
if (Ab.matrixChild(j, i).nullStatus(context) != ExpressionNode::NullStatus::Null) {
|
||
rowWithNullCoefficients = false;
|
||
break;
|
||
}
|
||
}
|
||
if (rowWithNullCoefficients && Ab.matrixChild(j, n).nullStatus(context) != ExpressionNode::NullStatus::Null) {
|
||
// TODO: Handle ExpressionNode::NullStatus::Unknown
|
||
m_numberOfSolutions = 0;
|
||
}
|
||
}
|
||
if (m_numberOfSolutions > 0) {
|
||
// if rank(A | b) < n, the system has an infinite number of solutions
|
||
if (rankAb == n && n > 0) {
|
||
// Otherwise, the system has n solutions which correspond to the last column
|
||
m_numberOfSolutions = n;
|
||
for (int i = 0; i < m_numberOfSolutions; i++) {
|
||
exactSolutions[i] = Ab.matrixChild(i,n);
|
||
exactSolutions[i].simplifyAndApproximate(&exactSolutions[i], &exactSolutionsApproximations[i], context, updatedComplexFormat(context), angleUnit, unitFormat);
|
||
}
|
||
}
|
||
}
|
||
return Error::NoError;
|
||
}
|
||
|
||
EquationStore::Error EquationStore::oneDimensionalPolynomialSolve(Expression exactSolutions[k_maxNumberOfExactSolutions], Expression exactSolutionsApproximations[k_maxNumberOfExactSolutions], Expression coefficients[Expression::k_maxNumberOfPolynomialCoefficients], int degree, Context * context) {
|
||
/* Equation ax^2+bx+c = 0 */
|
||
assert(degree == 2);
|
||
// Compute delta = b*b-4ac
|
||
Expression delta = Subtraction::Builder(Power::Builder(coefficients[1].clone(), Rational::Builder(2)), Multiplication::Builder(Rational::Builder(4), coefficients[0].clone(), coefficients[2].clone()));
|
||
delta = delta.simplify(ExpressionNode::ReductionContext(context, updatedComplexFormat(context), Poincare::Preferences::sharedPreferences()->angleUnit(), GlobalPreferences::sharedGlobalPreferences()->unitFormat(), ExpressionNode::ReductionTarget::SystemForApproximation));
|
||
if (delta.isUninitialized()) {
|
||
delta = Poincare::Undefined::Builder();
|
||
}
|
||
if (delta.nullStatus(context) == ExpressionNode::NullStatus::Null) {
|
||
// if delta = 0, x0=x1= -b/(2a)
|
||
exactSolutions[0] = Division::Builder(Opposite::Builder(coefficients[1]), Multiplication::Builder(Rational::Builder(2), coefficients[2]));
|
||
m_numberOfSolutions = 2;
|
||
} else {
|
||
// TODO: Handle ExpressionNode::NullStatus::Unknown
|
||
// x0 = (-b-sqrt(delta))/(2a)
|
||
exactSolutions[0] = Division::Builder(Subtraction::Builder(Opposite::Builder(coefficients[1].clone()), SquareRoot::Builder(delta.clone())), Multiplication::Builder(Rational::Builder(2), coefficients[2].clone()));
|
||
// x1 = (-b+sqrt(delta))/(2a)
|
||
exactSolutions[1] = Division::Builder(Addition::Builder(Opposite::Builder(coefficients[1]), SquareRoot::Builder(delta.clone())), Multiplication::Builder(Rational::Builder(2), coefficients[2]));
|
||
m_numberOfSolutions = 3;
|
||
}
|
||
exactSolutions[m_numberOfSolutions-1] = delta;
|
||
for (int i = 0; i < m_numberOfSolutions; i++) {
|
||
exactSolutions[i].simplifyAndApproximate(&exactSolutions[i], &exactSolutionsApproximations[i], context, updatedComplexFormat(context), Poincare::Preferences::sharedPreferences()->angleUnit(), GlobalPreferences::sharedGlobalPreferences()->unitFormat());
|
||
}
|
||
return Error::NoError;
|
||
#if 0
|
||
if (degree == 3) {
|
||
Expression * a = coefficients[3];
|
||
Expression * b = coefficients[2];
|
||
Expression * c = coefficients[1];
|
||
Expression * d = coefficients[0];
|
||
// Delta = b^2*c^2+18abcd-27a^2*d^2-4ac^3-4db^3
|
||
Expression * mult0Operands[2] = {new Power::Builder(b->clone(), new Rational::Builder(2), false), new Power::Builder(c->clone(), new Rational::Builder(2), false)};
|
||
Expression * mult1Operands[5] = {new Rational::Builder(18), a->clone(), b->clone(), c->clone(), d->clone()};
|
||
Expression * mult2Operands[3] = {new Rational::Builder(-27), new Power::Builder(a->clone(), new Rational::Builder(2), false), new Power::Builder(d->clone(), new Rational::Builder(2), false)};
|
||
Expression * mult3Operands[3] = {new Rational::Builder(-4), a->clone(), new Power::Builder(c->clone(), new Rational::Builder(3), false)};
|
||
Expression * mult4Operands[3] = {new Rational::Builder(-4), d->clone(), new Power::Builder(b->clone(), new Rational::Builder(3), false)};
|
||
Expression * add0Operands[5] = {new Multiplication::Builder(mult0Operands, 2, false), new Multiplication::Builder(mult1Operands, 5, false), new Multiplication::Builder(mult2Operands, 3, false), new Multiplication::Builder(mult3Operands, 3, false), new Multiplication::Builder(mult4Operands, 3, false)};
|
||
Expression * delta = new Addition(add0Operands, 5, false);
|
||
PoincareHelpers::Simplify(&delta, *context);
|
||
// Delta0 = b^2-3ac
|
||
Expression * mult5Operands[3] = {new Rational::Builder(3), a->clone(), c->clone()};
|
||
Expression * delta0 = new Subtraction::Builder(new Power::Builder(b->clone(), new Rational::Builder(2), false), new Multiplication::Builder(mult5Operands, 3, false), false);
|
||
Reduce(&delta0, *context);
|
||
if (delta->nullStatus(context) == ExpressionNode::NullStatus::Null) {
|
||
if (delta0->nullStatus(context) == ExpressionNode::NullStatus::Null) {
|
||
// delta0 = 0 && delta = 0 --> x0 = -b/(3a)
|
||
delete delta0;
|
||
m_exactSolutions[0] = new Opposite::Builder(new Division::Builder(b, new Multiplication::Builder(new Rational::Builder(3), a, false), false), false);
|
||
m_numberOfSolutions = 1;
|
||
delete c;
|
||
delete d;
|
||
} else {
|
||
// delta = 0 --> x0 = (9ad-bc)/(2delta0)
|
||
// --> x1 = (4abc-9a^2d-b^3)/(a*delta0)
|
||
Expression * mult6Operands[3] = {new Rational::Builder(9), a, d};
|
||
m_exactSolutions[0] = new Division::Builder(new Subtraction::Builder(new Multiplication::Builder(mult6Operands, 3, false), new Multiplication::Builder(b, c, false), false), new Multiplication::Builder(new Rational::Builder(2), delta0, false), false);
|
||
Expression * mult7Operands[4] = {new Rational::Builder(4), a->clone(), b->clone(), c->clone()};
|
||
Expression * mult8Operands[3] = {new Rational::Builder(-9), new Power::Builder(a->clone(), new Rational::Builder(2), false), d->clone()};
|
||
Expression * add1Operands[3] = {new Multiplication::Builder(mult7Operands, 4, false), new Multiplication::Builder(mult8Operands,3, false), new Opposite::Builder(new Power::Builder(b->clone(), new Rational::Builder(3), false), false)};
|
||
m_exactSolutions[1] = new Division::Builder(new Addition(add1Operands, 3, false), new Multiplication::Builder(a->clone(), delta0, false), false);
|
||
m_numberOfSolutions = 2;
|
||
}
|
||
} else {
|
||
// delta1 = 2b^3-9abc+27a^2*d
|
||
Expression * mult9Operands[4] = {new Rational::Builder(-9), a, b, c};
|
||
Expression * mult10Operands[3] = {new Rational::Builder(27), new Power::Builder(a->clone(), new Rational::Builder(2), false), d};
|
||
Expression * add2Operands[3] = {new Multiplication::Builder(new Rational::Builder(2), new Power::Builder(b->clone(), new Rational::Builder(3), false), false), new Multiplication::Builder(mult9Operands, 4, false), new Multiplication::Builder(mult10Operands, 3, false)};
|
||
Expression * delta1 = new Addition(add2Operands, 3, false);
|
||
// C = Root((delta1+sqrt(-27a^2*delta))/2, 3)
|
||
Expression * mult11Operands[3] = {new Rational::Builder(-27), new Power::Builder(a->clone(), new Rational::Builder(2), false), (*delta)->clone()};
|
||
Expression * c = new Power::Builder(new Division::Builder(new Addition(delta1, new SquareRoot(new Multiplication::Builder(mult11Operands, 3, false), false), false), new Rational::Builder(2), false), new Rational::Builder(1,3), false);
|
||
Expression * unary3roots[2] = {new Addition(new Rational::Builder(-1,2), new Division::Builder(new Multiplication::Builder(new SquareRoot(new Rational::Builder(3), false), new Constant::Builder(UCodePointMathematicalBoldSmallI), false), new Rational::Builder(2), false), false), new Subtraction::Builder(new Rational::Builder(-1,2), new Division::Builder(new Multiplication::Builder(new SquareRoot(new Rational::Builder(3), false), new Constant::Builder(UCodePointMathematicalBoldSmallI), false), new Rational::Builder(2), false), false)};
|
||
// x_k = -1/(3a)*(b+C*z+delta0/(zC)) with z = unary cube root
|
||
for (int k = 0; k < 3; k++) {
|
||
Expression * ccopy = c;
|
||
Expression * delta0copy = delta0;
|
||
if (k < 2) {
|
||
ccopy = new Multiplication::Builder(c->clone(), unary3roots[k], false);
|
||
delta0copy = delta0->clone();
|
||
}
|
||
Expression * add3Operands[3] = {b->clone(), ccopy, new Division::Builder(delta0copy, ccopy->clone(), false)};
|
||
m_exactSolutions[k] = new Multiplication::Builder(new Division::Builder(new Rational::Builder(-1), new Multiplication::Builder(new Rational::Builder(3), a->clone(), false), false), new Addition(add3Operands, 3, false), false);
|
||
}
|
||
m_numberOfSolutions = 3;
|
||
}
|
||
m_exactSolutions[m_numberOfSolutions] = delta;
|
||
}
|
||
#endif
|
||
}
|
||
|
||
void EquationStore::tidySolution() {
|
||
for (int i = 0; i < k_maxNumberOfExactSolutions; i++) {
|
||
m_exactSolutionExactLayouts[i] = Layout();
|
||
m_exactSolutionApproximateLayouts[i] = Layout();
|
||
}
|
||
}
|
||
|
||
Preferences::ComplexFormat EquationStore::updatedComplexFormat(Context * context) {
|
||
Preferences::ComplexFormat complexFormat = Preferences::sharedPreferences()->complexFormat();
|
||
if (complexFormat == Preferences::ComplexFormat::Real && isExplicitlyComplex(context)) {
|
||
return Preferences::ComplexFormat::Cartesian;
|
||
}
|
||
return complexFormat;
|
||
}
|
||
|
||
bool EquationStore::isExplicitlyComplex(Context * context) {
|
||
for (int i = 0; i < numberOfDefinedModels(); i++) {
|
||
if (modelForRecord(definedRecordAtIndex(i))->containsIComplex(context)) {
|
||
return true;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
}
|