mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-18 16:27:34 +01:00
520 lines
31 KiB
C++
520 lines
31 KiB
C++
#include <apps/shared/global_context.h>
|
||
#include "helper.h"
|
||
|
||
using namespace Poincare;
|
||
|
||
QUIZ_CASE(poincare_properties_is_number) {
|
||
quiz_assert(BasedInteger::Builder("2",Integer::Base::Binary).isNumber());
|
||
quiz_assert(BasedInteger::Builder("2",Integer::Base::Decimal).isNumber());
|
||
quiz_assert(BasedInteger::Builder("2",Integer::Base::Hexadecimal).isNumber());
|
||
quiz_assert(Decimal::Builder("2",3).isNumber());
|
||
quiz_assert(Float<float>::Builder(1.0f).isNumber());
|
||
quiz_assert(Infinity::Builder(true).isNumber());
|
||
quiz_assert(Undefined::Builder().isNumber());
|
||
quiz_assert(Rational::Builder(2,3).isNumber());
|
||
quiz_assert(!Symbol::Builder('a').isNumber());
|
||
quiz_assert(!Multiplication::Builder(Rational::Builder(1), Rational::Builder(2)).isNumber());
|
||
quiz_assert(!Addition::Builder(Rational::Builder(1), Rational::Builder(2)).isNumber());
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_is_number_zero) {
|
||
Shared::GlobalContext context;
|
||
quiz_assert(BasedInteger::Builder("2",Integer::Base::Binary).nullStatus(&context) == ExpressionNode::NullStatus::NonNull );
|
||
quiz_assert(BasedInteger::Builder("2",Integer::Base::Decimal).nullStatus(&context) == ExpressionNode::NullStatus::NonNull );
|
||
quiz_assert(BasedInteger::Builder("2",Integer::Base::Hexadecimal).nullStatus(&context) == ExpressionNode::NullStatus::NonNull );
|
||
quiz_assert(BasedInteger::Builder("0",Integer::Base::Binary).nullStatus(&context) == ExpressionNode::NullStatus::Null );
|
||
quiz_assert(BasedInteger::Builder("0",Integer::Base::Decimal).nullStatus(&context) == ExpressionNode::NullStatus::Null );
|
||
quiz_assert(BasedInteger::Builder("0",Integer::Base::Hexadecimal).nullStatus(&context) == ExpressionNode::NullStatus::Null );
|
||
quiz_assert(Decimal::Builder("2",3).nullStatus(&context) == ExpressionNode::NullStatus::NonNull );
|
||
quiz_assert(Decimal::Builder("0",0).nullStatus(&context) == ExpressionNode::NullStatus::Null );
|
||
quiz_assert(Float<float>::Builder(1.0f).nullStatus(&context) == ExpressionNode::NullStatus::NonNull );
|
||
quiz_assert(Float<float>::Builder(0.0f).nullStatus(&context) == ExpressionNode::NullStatus::Null );
|
||
quiz_assert(Infinity::Builder(true).nullStatus(&context) == ExpressionNode::NullStatus::NonNull );
|
||
quiz_assert(Undefined::Builder().nullStatus(&context) == ExpressionNode::NullStatus::Unknown);
|
||
quiz_assert(Rational::Builder(2,3).nullStatus(&context) == ExpressionNode::NullStatus::NonNull );
|
||
quiz_assert(Rational::Builder(0,1).nullStatus(&context) == ExpressionNode::NullStatus::Null );
|
||
quiz_assert(Symbol::Builder('a').nullStatus(&context) == ExpressionNode::NullStatus::Unknown);
|
||
quiz_assert(Multiplication::Builder(Rational::Builder(1), Rational::Builder(0)).nullStatus(&context) == ExpressionNode::NullStatus::Unknown);
|
||
quiz_assert(Addition::Builder(Rational::Builder(1), Rational::Builder(-1)).nullStatus(&context) == ExpressionNode::NullStatus::Unknown);
|
||
|
||
quiz_assert(AbsoluteValue::Builder(Rational::Builder(0)).nullStatus(&context) == ExpressionNode::NullStatus::Null);
|
||
quiz_assert(ArcSine::Builder(Rational::Builder(1,7)).nullStatus(&context) == ExpressionNode::NullStatus::NonNull);
|
||
quiz_assert(ComplexCartesian::Builder(Rational::Builder(0), Rational::Builder(3, 2)).nullStatus(&context) == ExpressionNode::NullStatus::NonNull);
|
||
quiz_assert(ComplexCartesian::Builder(Rational::Builder(0), Rational::Builder(0)).nullStatus(&context) == ExpressionNode::NullStatus::Null);
|
||
quiz_assert(Conjugate::Builder(ComplexCartesian::Builder(Rational::Builder(2, 3), Rational::Builder(3, 2))).nullStatus(&context) == ExpressionNode::NullStatus::NonNull);
|
||
quiz_assert(Factor::Builder(Rational::Builder(0)).nullStatus(&context) == ExpressionNode::NullStatus::Null);
|
||
quiz_assert(Factorial::Builder(Rational::Builder(0)).nullStatus(&context) == ExpressionNode::NullStatus::NonNull);
|
||
quiz_assert(ImaginaryPart::Builder(Rational::Builder(14)).nullStatus(&context) == ExpressionNode::NullStatus::Null);
|
||
quiz_assert(RealPart::Builder(Rational::Builder(0)).nullStatus(&context) == ExpressionNode::NullStatus::Null);
|
||
quiz_assert(Parenthesis::Builder(Rational::Builder(-7)).nullStatus(&context) == ExpressionNode::NullStatus::NonNull);
|
||
quiz_assert(SignFunction::Builder(Rational::Builder(0)).nullStatus(&context) == ExpressionNode::NullStatus::Null);
|
||
quiz_assert(Unit::Builder(Unit::k_powerRepresentatives, Unit::Prefix::EmptyPrefix()).nullStatus(&context) == ExpressionNode::NullStatus::NonNull);
|
||
quiz_assert(Division::Builder(Rational::Builder(0), Rational::Builder(3,7)).nullStatus(&context) == ExpressionNode::NullStatus::Null);
|
||
quiz_assert(Power::Builder(Rational::Builder(0), Rational::Builder(3,7)).nullStatus(&context) == ExpressionNode::NullStatus::Null);
|
||
quiz_assert(SquareRoot::Builder(Rational::Builder(2,5)).nullStatus(&context) == ExpressionNode::NullStatus::NonNull);
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_is_random) {
|
||
quiz_assert(Random::Builder().isRandom());
|
||
quiz_assert(Randint::Builder(Rational::Builder(1), Rational::Builder(2)).isRandom());
|
||
quiz_assert(!Symbol::Builder('a').isRandom());
|
||
quiz_assert(!Rational::Builder(2,3).isRandom());
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_is_parametered_expression) {
|
||
quiz_assert(Derivative::Builder(Rational::Builder(1), Symbol::Builder('x'), Rational::Builder(2)).isParameteredExpression());
|
||
quiz_assert(Integral::Builder(Rational::Builder(1), Symbol::Builder('x'), Rational::Builder(2), Rational::Builder(2)).isParameteredExpression());
|
||
quiz_assert(Sum::Builder(Rational::Builder(1), Symbol::Builder('n'), Rational::Builder(2), Rational::Builder(2)).isParameteredExpression());
|
||
quiz_assert(Product::Builder(Rational::Builder(1), Symbol::Builder('n'), Rational::Builder(2), Rational::Builder(2)).isParameteredExpression());
|
||
quiz_assert(!Symbol::Builder('a').isParameteredExpression());
|
||
quiz_assert(!Rational::Builder(2,3).isParameteredExpression());
|
||
}
|
||
|
||
void assert_expression_has_property(const char * expression, Context * context, Expression::ExpressionTest test) {
|
||
Expression e = parse_expression(expression, context, false);
|
||
quiz_assert_print_if_failure(e.recursivelyMatches(test, context), expression);
|
||
}
|
||
|
||
void assert_expression_has_not_property(const char * expression, Context * context, Expression::ExpressionTest test) {
|
||
Expression e = parse_expression(expression, context, false);
|
||
quiz_assert_print_if_failure(!e.recursivelyMatches(test, context), expression);
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_is_approximate) {
|
||
Shared::GlobalContext context;
|
||
assert_expression_has_property("3.4", &context, Expression::IsApproximate);
|
||
assert_expression_has_property("2.3+1", &context, Expression::IsApproximate);
|
||
assert_expression_has_not_property("a", &context, Expression::IsApproximate);
|
||
assert_reduce("42.3→a");
|
||
assert_expression_has_property("a", &context, Expression::IsApproximate);
|
||
Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy();
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_is_matrix) {
|
||
Shared::GlobalContext context;
|
||
assert_expression_has_property("[[1,2][3,4]]", &context, Expression::IsMatrix);
|
||
assert_expression_has_property("confidence(0.2,3)*2", &context, Expression::IsMatrix);
|
||
assert_expression_has_property("dim([[1,2][3,4]])/3", &context, Expression::IsMatrix);
|
||
assert_expression_has_property("prediction(0.3,10)", &context, Expression::IsMatrix);
|
||
assert_expression_has_property("[[1,2][3,4]]^(-1)", &context, Expression::IsMatrix);
|
||
assert_expression_has_property("inverse([[1,2][3,4]])", &context, Expression::IsMatrix);
|
||
assert_expression_has_property("3*identity(4)", &context, Expression::IsMatrix);
|
||
assert_expression_has_property("transpose([[1,2][3,4]])", &context, Expression::IsMatrix);
|
||
assert_expression_has_property("ref([[1,2][3,4]])", &context, Expression::IsMatrix);
|
||
assert_expression_has_property("rref([[1,2][3,4]])", &context, Expression::IsMatrix);
|
||
assert_expression_has_property("cross([[1][2][3]],[[3][4][5]])", &context, Expression::IsMatrix);
|
||
assert_expression_has_not_property("2*3+1", &context, Expression::IsMatrix);
|
||
}
|
||
|
||
void assert_expression_is_deep_matrix(const char * expression) {
|
||
Shared::GlobalContext context;
|
||
Expression e = parse_expression(expression, &context, false);
|
||
quiz_assert_print_if_failure(e.deepIsMatrix(&context), expression);
|
||
}
|
||
|
||
void assert_expression_is_not_deep_matrix(const char * expression) {
|
||
Shared::GlobalContext context;
|
||
Expression e = parse_expression(expression, &context, false);
|
||
quiz_assert_print_if_failure(!e.deepIsMatrix(&context), expression);
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_deep_is_matrix) {
|
||
assert_expression_is_not_deep_matrix("diff([[1,2][3,4]],x,2)");
|
||
assert_expression_is_not_deep_matrix("sign([[1,2][3,4]])");
|
||
assert_expression_is_not_deep_matrix("3");
|
||
assert_expression_is_deep_matrix("2*dim(2)");
|
||
assert_expression_is_deep_matrix("log(confidence(0.2,20))");
|
||
assert_expression_is_deep_matrix("confidence(0.2,20)^2");
|
||
assert_expression_is_deep_matrix("cos(confidence(0.2,20))");
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_is_infinity) {
|
||
Shared::GlobalContext context;
|
||
assert_expression_has_property("3.4+inf", &context, Expression::IsInfinity);
|
||
assert_expression_has_not_property("2.3+1", &context, Expression::IsInfinity);
|
||
assert_expression_has_not_property("a", &context, Expression::IsInfinity);
|
||
assert_reduce("42.3+inf→a");
|
||
assert_expression_has_property("a", &context, Expression::IsInfinity);
|
||
Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy();
|
||
}
|
||
|
||
constexpr Poincare::ExpressionNode::Sign Positive = Poincare::ExpressionNode::Sign::Positive;
|
||
constexpr Poincare::ExpressionNode::Sign Negative = Poincare::ExpressionNode::Sign::Negative;
|
||
constexpr Poincare::ExpressionNode::Sign Unknown = Poincare::ExpressionNode::Sign::Unknown;
|
||
|
||
void assert_reduced_expression_sign(const char * expression, Poincare::ExpressionNode::Sign sign, Preferences::ComplexFormat complexFormat = Cartesian, Preferences::AngleUnit angleUnit = Radian, Preferences::UnitFormat unitFormat = Metric) {
|
||
Shared::GlobalContext globalContext;
|
||
Expression e = parse_expression(expression, &globalContext, false);
|
||
e = e.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, unitFormat, ExpressionNode::ReductionTarget::SystemForApproximation));
|
||
quiz_assert_print_if_failure(e.sign(&globalContext) == sign, expression);
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_decimal_sign) {
|
||
quiz_assert(Decimal::Builder(-2, 3).sign() == ExpressionNode::Sign::Negative);
|
||
quiz_assert(Decimal::Builder(-2, -3).sign() == ExpressionNode::Sign::Negative);
|
||
quiz_assert(Decimal::Builder(2, -3).sign() == ExpressionNode::Sign::Positive);
|
||
quiz_assert(Decimal::Builder(2, 3).sign() == ExpressionNode::Sign::Positive);
|
||
quiz_assert(Decimal::Builder(0, 1).sign() == ExpressionNode::Sign::Positive);
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_based_integer_sign) {
|
||
quiz_assert(BasedInteger::Builder(2, Integer::Base::Binary).sign() == ExpressionNode::Sign::Positive);
|
||
quiz_assert(BasedInteger::Builder(2, Integer::Base::Decimal).sign() == ExpressionNode::Sign::Positive);
|
||
quiz_assert(BasedInteger::Builder(2, Integer::Base::Hexadecimal).sign() == ExpressionNode::Sign::Positive);
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_rational_sign) {
|
||
quiz_assert(Rational::Builder(-2).sign() == ExpressionNode::Sign::Negative);
|
||
quiz_assert(Rational::Builder(-2, 3).sign() == ExpressionNode::Sign::Negative);
|
||
quiz_assert(Rational::Builder(2, 3).sign() == ExpressionNode::Sign::Positive);
|
||
quiz_assert(Rational::Builder(0, 3).sign() == ExpressionNode::Sign::Positive);
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_expression_sign) {
|
||
Shared::GlobalContext context;
|
||
quiz_assert(ArcCosine::Builder(Rational::Builder(-1,7)).sign(&context) == ExpressionNode::Sign::Positive);
|
||
quiz_assert(ArcCosine::Builder(Symbol::Builder('a')).sign(&context) == ExpressionNode::Sign::Unknown);
|
||
quiz_assert(ArcSine::Builder(Rational::Builder(-1,7)).sign(&context) == ExpressionNode::Sign::Negative);
|
||
quiz_assert(ArcTangent::Builder(Rational::Builder(1,7)).sign(&context) == ExpressionNode::Sign::Positive);
|
||
quiz_assert(Ceiling::Builder(Rational::Builder(7,3)).sign(&context) == ExpressionNode::Sign::Positive);
|
||
quiz_assert(Floor::Builder(Rational::Builder(7,3)).sign(&context) == ExpressionNode::Sign::Positive);
|
||
quiz_assert(Round::Builder(Rational::Builder(7,3), Rational::Builder(1)).sign(&context) == ExpressionNode::Sign::Positive);
|
||
quiz_assert(Conjugate::Builder(ComplexCartesian::Builder(Rational::Builder(2, 3), BasedInteger::Builder(0, Integer::Base::Binary))).sign(&context) == ExpressionNode::Sign::Positive);
|
||
quiz_assert(DivisionRemainder::Builder(Decimal::Builder(2.0), Decimal::Builder(3.0)).sign(&context) == ExpressionNode::Sign::Positive);
|
||
quiz_assert(AbsoluteValue::Builder(Rational::Builder(-14)).sign(&context) == ExpressionNode::Sign::Positive);
|
||
quiz_assert(FracPart::Builder(Rational::Builder(-7,3)).sign(&context) == ExpressionNode::Sign::Positive);
|
||
quiz_assert(GreatCommonDivisor::Builder({Rational::Builder(-7),Rational::Builder(-7)}).sign(&context) == ExpressionNode::Sign::Positive);
|
||
quiz_assert(LeastCommonMultiple::Builder({Rational::Builder(-7),Rational::Builder(-7)}).sign(&context) == ExpressionNode::Sign::Positive);
|
||
quiz_assert(Opposite::Builder(Rational::Builder(7)).sign(&context) == ExpressionNode::Sign::Negative);
|
||
quiz_assert(Parenthesis::Builder(Rational::Builder(-7)).sign(&context) == ExpressionNode::Sign::Negative);
|
||
quiz_assert(PermuteCoefficient::Builder(Rational::Builder(7),Rational::Builder(8)).sign(&context) == ExpressionNode::Sign::Positive);
|
||
quiz_assert(RealPart::Builder(Rational::Builder(-7)).sign(&context) == ExpressionNode::Sign::Negative);
|
||
quiz_assert(SignFunction::Builder(Rational::Builder(-7)).sign(&context) == ExpressionNode::Sign::Negative);
|
||
quiz_assert(Unit::Builder(Unit::k_powerRepresentatives, Unit::Prefix::EmptyPrefix()).sign(&context) == ExpressionNode::Sign::Positive);
|
||
quiz_assert(VectorNorm::Builder(BasedInteger::Builder(1)).sign(&context) == ExpressionNode::Sign::Positive);
|
||
quiz_assert(Division::Builder(Rational::Builder(7,3), Rational::Builder(-1)).sign(&context) == ExpressionNode::Sign::Negative);
|
||
quiz_assert(DivisionQuotient::Builder(Rational::Builder(-7), Rational::Builder(-1)).sign(&context) == ExpressionNode::Sign::Positive);
|
||
quiz_assert(ArcSine::Builder(Floor::Builder(ArcTangent::Builder(Opposite::Builder(RealPart::Builder(ArcCosine::Builder(Constant::Builder(UCodePointGreekSmallLetterPi))))))).sign(&context) == ExpressionNode::Sign::Negative);
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_sign) {
|
||
assert_reduced_expression_sign("abs(-cos(2)+I)", Positive);
|
||
assert_reduced_expression_sign("2.345ᴇ-23", Positive);
|
||
assert_reduced_expression_sign("-2.345ᴇ-23", Negative);
|
||
assert_reduced_expression_sign("2×(-3)×abs(-32)", Negative);
|
||
assert_reduced_expression_sign("2×(-3)×abs(-32)×cos(3)", Unknown);
|
||
assert_reduced_expression_sign("x", Unknown);
|
||
assert_reduced_expression_sign("2^(-abs(3))", Positive);
|
||
assert_reduced_expression_sign("(-2)^4", Positive);
|
||
assert_reduced_expression_sign("(-2)^3", Negative);
|
||
assert_reduced_expression_sign("random()", Positive);
|
||
assert_reduced_expression_sign("42/3", Positive);
|
||
assert_reduced_expression_sign("-23/32", Negative);
|
||
assert_reduced_expression_sign("𝐢", Unknown);
|
||
assert_reduced_expression_sign("-π", Negative);
|
||
assert_reduced_expression_sign("π", Positive);
|
||
assert_reduced_expression_sign("ℯ", Positive);
|
||
assert_reduced_expression_sign("0", Positive);
|
||
assert_reduced_expression_sign("cos(π/2)", Positive);
|
||
assert_reduced_expression_sign("cos(90)", Positive, Cartesian, Degree);
|
||
assert_reduced_expression_sign("√(-1)", Unknown);
|
||
assert_reduced_expression_sign("√(-1)", Unknown, Real);
|
||
assert_reduced_expression_sign("sign(π)", Positive);
|
||
assert_reduced_expression_sign("sign(-π)", Negative);
|
||
assert_reduced_expression_sign("a", Unknown);
|
||
assert_reduce("42→a");
|
||
assert_reduced_expression_sign("a", Positive);
|
||
Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy();
|
||
}
|
||
|
||
void assert_expression_is_real(const char * expression) {
|
||
Shared::GlobalContext context;
|
||
// isReal can be call only on reduced expressions
|
||
Expression e = parse_expression(expression, &context, false).reduce(ExpressionNode::ReductionContext(&context, Cartesian, Radian, Metric, ExpressionNode::ReductionTarget::SystemForApproximation));
|
||
quiz_assert_print_if_failure(e.isReal(&context), expression);
|
||
}
|
||
|
||
void assert_expression_is_not_real(const char * expression) {
|
||
Shared::GlobalContext context;
|
||
// isReal can be call only on reduced expressions
|
||
Expression e = parse_expression(expression, &context, false).reduce(ExpressionNode::ReductionContext(&context, Cartesian, Radian, Metric, ExpressionNode::ReductionTarget::SystemForApproximation));
|
||
quiz_assert_print_if_failure(!e.isReal(&context), expression);
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_is_real) {
|
||
assert_expression_is_real("atan(4)");
|
||
assert_expression_is_not_real("atan(𝐢)");
|
||
assert_expression_is_real("conj(4)");
|
||
assert_expression_is_not_real("conj(𝐢)");
|
||
assert_expression_is_real("sin(4)");
|
||
assert_expression_is_not_real("sin(𝐢)");
|
||
assert_expression_is_real("quo(2,3+a)");
|
||
assert_expression_is_real("sign(2)");
|
||
assert_expression_is_real("abs(2)");
|
||
assert_expression_is_not_real("abs([[1,2]])");
|
||
assert_expression_is_real("ceil(2)");
|
||
assert_expression_is_not_real("ceil([[1,2]])");
|
||
assert_expression_is_not_real("1+2+3+3×𝐢");
|
||
assert_expression_is_real("1+2+3+root(2,3)");
|
||
assert_expression_is_real("1×23×3×root(2,3)");
|
||
assert_expression_is_not_real("1×23×3×root(2,3)×3×𝐢");
|
||
assert_expression_is_not_real("1×23×3×[[1,2]]");
|
||
assert_expression_is_not_real("1×23×3×abs(confidence(cos(5)/25,3))");
|
||
assert_expression_is_real("π");
|
||
assert_expression_is_not_real("unreal");
|
||
assert_expression_is_not_real("undef");
|
||
assert_expression_is_real("2.3");
|
||
assert_expression_is_real("2^3.4");
|
||
assert_expression_is_real("(-2)^(-3)");
|
||
assert_expression_is_not_real("𝐢^3.4");
|
||
assert_expression_is_not_real("2^(3.4𝐢)");
|
||
assert_expression_is_not_real("(-2)^0.4");
|
||
}
|
||
|
||
void assert_reduced_expression_polynomial_degree(const char * expression, int degree, const char * symbolName = "x", Preferences::ComplexFormat complexFormat = Cartesian, Preferences::AngleUnit angleUnit = Radian, Preferences::UnitFormat unitFormat = Metric) {
|
||
Shared::GlobalContext globalContext;
|
||
Expression e = parse_expression(expression, &globalContext, false);
|
||
Expression result = e.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, unitFormat, SystemForApproximation));
|
||
|
||
quiz_assert_print_if_failure(result.polynomialDegree(&globalContext, symbolName) == degree, expression);
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_polynomial_degree) {
|
||
assert_reduced_expression_polynomial_degree("x+1", 1);
|
||
assert_reduced_expression_polynomial_degree("cos(2)+1", 0);
|
||
assert_reduced_expression_polynomial_degree("confidence(0.2,10)+1", -1);
|
||
assert_reduced_expression_polynomial_degree("diff(3×x+x,x,2)", 0);
|
||
assert_reduced_expression_polynomial_degree("diff(3×x+x,x,x)", 0);
|
||
assert_reduced_expression_polynomial_degree("diff(3×x+x,x,x)", 0, "a");
|
||
assert_reduced_expression_polynomial_degree("(3×x+2)/3", 1);
|
||
assert_reduced_expression_polynomial_degree("(3×x+2)/x", -1);
|
||
assert_reduced_expression_polynomial_degree("int(2×x,x, 0, 1)", -1);
|
||
assert_reduced_expression_polynomial_degree("int(2×x,x, 0, 1)", 0, "a");
|
||
assert_reduced_expression_polynomial_degree("[[1,2][3,4]]", -1);
|
||
assert_reduced_expression_polynomial_degree("(x^2+2)×(x+1)", 3);
|
||
assert_reduced_expression_polynomial_degree("-(x+1)", 1);
|
||
assert_reduced_expression_polynomial_degree("(x^2+2)^(3)", 6);
|
||
assert_reduced_expression_polynomial_degree("prediction(0.2,10)+1", -1);
|
||
assert_reduced_expression_polynomial_degree("2-x-x^3", 3);
|
||
assert_reduced_expression_polynomial_degree("π×x", 1);
|
||
assert_reduced_expression_polynomial_degree("√(-1)×x", -1, "x", Real);
|
||
// f: x→x^2+πx+1
|
||
assert_reduce("1+π×x+x^2→f(x)");
|
||
assert_reduced_expression_polynomial_degree("f(x)", 2);
|
||
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
|
||
}
|
||
|
||
void assert_expression_has_variables(const char * expression, const char * variables[], int trueNumberOfVariables) {
|
||
Shared::GlobalContext globalContext;
|
||
Expression e = parse_expression(expression, &globalContext, false);
|
||
constexpr static int k_maxVariableSize = Poincare::SymbolAbstract::k_maxNameSize;
|
||
char variableBuffer[Expression::k_maxNumberOfVariables][k_maxVariableSize] = {{0}};
|
||
int numberOfVariables = e.getVariables(&globalContext, [](const char * symbol, Poincare::Context * context) { return true; }, (char *)variableBuffer, k_maxVariableSize);
|
||
quiz_assert_print_if_failure(trueNumberOfVariables == numberOfVariables, expression);
|
||
if (numberOfVariables < 0) {
|
||
// Too many variables
|
||
return;
|
||
}
|
||
int index = 0;
|
||
while (index < Expression::k_maxNumberOfVariables && (variableBuffer[index][0] != 0 || variables[index][0] != 0)) {
|
||
quiz_assert_print_if_failure(strcmp(variableBuffer[index], variables[index]) == 0, expression);
|
||
index++;
|
||
}
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_get_variables) {
|
||
const char * variableBuffer1[] = {"x","y",""};
|
||
assert_expression_has_variables("x+y", variableBuffer1, 2);
|
||
const char * variableBuffer2[] = {"x","y","z","t",""};
|
||
assert_expression_has_variables("x+y+z+2×t", variableBuffer2, 4);
|
||
const char * variableBuffer3[] = {"a","x","y","k","A", ""};
|
||
assert_expression_has_variables("a+x^2+2×y+k!×A", variableBuffer3, 5);
|
||
const char * variableBuffer4[] = {"BABA","abab", ""};
|
||
assert_expression_has_variables("BABA+abab", variableBuffer4, 2);
|
||
const char * variableBuffer5[] = {"BBBBBB", ""};
|
||
assert_expression_has_variables("BBBBBB", variableBuffer5, 1);
|
||
const char * variableBuffer6[] = {""};
|
||
assert_expression_has_variables("a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+aa+bb+cc+dd+ee+ff+gg+hh+ii+jj+kk+ll+mm+nn+oo", variableBuffer6, -1);
|
||
assert_expression_has_variables("a+b+c+d+e+f+g", variableBuffer6, -1);
|
||
// f: x → 1+πx+x^2+toto
|
||
assert_reduce("1+π×x+x^2+toto→f(x)");
|
||
const char * variableBuffer7[] = {"tata","toto", ""};
|
||
assert_expression_has_variables("f(tata)", variableBuffer7, 2);
|
||
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
|
||
|
||
const char * variableBuffer8[] = {"y", ""};
|
||
assert_expression_has_variables("diff(3x,x,0)y-2", variableBuffer8, 1);
|
||
const char * variableBuffer9[] = {"a", "b", "c", "d", "e", "f"};
|
||
assert_expression_has_variables("a+b+c+d+e+f", variableBuffer9, 6);
|
||
|
||
const char * variableBuffer10[] = {"c", "z", "a", "b", ""};
|
||
assert_expression_has_variables("int(c×x×z, x, a, b)", variableBuffer10, 4);
|
||
const char * variableBuffer11[] = {"box", "y", "z", "a", ""};
|
||
assert_expression_has_variables("box+y×int(z,x,a,0)", variableBuffer11, 4);
|
||
|
||
// f: x → 0
|
||
assert_reduce("0→f(x)");
|
||
const char * variableBuffer12[] = {"var", ""};
|
||
assert_expression_has_variables("f(var)", variableBuffer12, 1);
|
||
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
|
||
// f: x → a, with a = 12
|
||
assert_reduce("12→a");
|
||
assert_reduce("a→f(x)");
|
||
const char * variableBuffer13[] = {"var", ""};
|
||
assert_expression_has_variables("f(var)", variableBuffer13, 1);
|
||
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
|
||
Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy();
|
||
// f: x → 1, g: x → 2
|
||
assert_reduce("1→f(x)");
|
||
assert_reduce("2→g(x)");
|
||
const char * variableBuffer14[] = {"x", "y", ""};
|
||
assert_expression_has_variables("f(g(x)+y)", variableBuffer14, 2);
|
||
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
|
||
Ion::Storage::sharedStorage()->recordNamed("g.func").destroy();
|
||
}
|
||
|
||
void assert_reduced_expression_has_polynomial_coefficient(const char * expression, const char * symbolName, const char ** coefficients, Preferences::ComplexFormat complexFormat = Cartesian, Preferences::AngleUnit angleUnit = Radian, Preferences::UnitFormat unitFormat = Metric, ExpressionNode::SymbolicComputation symbolicComputation = ReplaceAllDefinedSymbolsWithDefinition) {
|
||
Shared::GlobalContext globalContext;
|
||
Expression e = parse_expression(expression, &globalContext, false);
|
||
e = e.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, unitFormat, SystemForAnalysis, symbolicComputation));
|
||
Expression coefficientBuffer[Poincare::Expression::k_maxNumberOfPolynomialCoefficients];
|
||
int d = e.getPolynomialReducedCoefficients(symbolName, coefficientBuffer, &globalContext, complexFormat, Radian, unitFormat, symbolicComputation);
|
||
for (int i = 0; i <= d; i++) {
|
||
Expression f = parse_expression(coefficients[i], &globalContext, false);
|
||
coefficientBuffer[i] = coefficientBuffer[i].reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, unitFormat, SystemForAnalysis, symbolicComputation));
|
||
f = f.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, unitFormat, SystemForAnalysis, symbolicComputation));
|
||
quiz_assert_print_if_failure(coefficientBuffer[i].isIdenticalTo(f), expression);
|
||
}
|
||
quiz_assert_print_if_failure(coefficients[d+1] == 0, expression);
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_get_polynomial_coefficients) {
|
||
const char * coefficient0[] = {"2", "1", "1", 0};
|
||
assert_reduced_expression_has_polynomial_coefficient("x^2+x+2", "x", coefficient0);
|
||
const char * coefficient1[] = {"12+(-6)×π", "12", "3", 0}; //3×x^2+12×x-6×π+12
|
||
assert_reduced_expression_has_polynomial_coefficient("3×(x+2)^2-6×π", "x", coefficient1);
|
||
// TODO: uncomment when enable 3-degree polynomials
|
||
//const char * coefficient2[] = {"2+32×x", "2", "6", "2", 0}; //2×n^3+6×n^2+2×n+2+32×x
|
||
//assert_reduced_expression_has_polynomial_coefficient("2×(n+1)^3-4n+32×x", "n", coefficient2);
|
||
const char * coefficient3[] = {"1", "-π", "1", 0}; //x^2-π×x+1
|
||
assert_reduced_expression_has_polynomial_coefficient("x^2-π×x+1", "x", coefficient3);
|
||
|
||
// f: x→x^2+Px+1
|
||
assert_reduce("1+π×x+x^2→f(x)");
|
||
const char * coefficient4[] = {"1", "π", "1", 0}; //x^2+π×x+1
|
||
assert_reduced_expression_has_polynomial_coefficient("f(x)", "x", coefficient4);
|
||
const char * coefficient5[] = {"0", "𝐢", 0}; //√(-1)x
|
||
assert_reduced_expression_has_polynomial_coefficient("√(-1)x", "x", coefficient5);
|
||
const char * coefficient6[] = {0}; //√(-1)x
|
||
assert_reduced_expression_has_polynomial_coefficient("√(-1)x", "x", coefficient6, Real);
|
||
|
||
// 3 -> x
|
||
assert_reduce("3→x");
|
||
const char * coefficient7[] = {"4", 0};
|
||
assert_reduced_expression_has_polynomial_coefficient("x+1", "x", coefficient7 );
|
||
const char * coefficient8[] = {"2", "1", 0};
|
||
assert_reduced_expression_has_polynomial_coefficient("x+2", "x", coefficient8, Real, Radian, Metric, DoNotReplaceAnySymbol);
|
||
assert_reduced_expression_has_polynomial_coefficient("x+2", "x", coefficient8, Real, Radian, Metric, ReplaceDefinedFunctionsWithDefinitions);
|
||
assert_reduced_expression_has_polynomial_coefficient("f(x)", "x", coefficient4, Cartesian, Radian, Metric, ReplaceDefinedFunctionsWithDefinitions);
|
||
|
||
// Clear the storage
|
||
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
|
||
Ion::Storage::sharedStorage()->recordNamed("x.exp").destroy();
|
||
}
|
||
|
||
void assert_reduced_expression_unit_is(const char * expression, const char * unit) {
|
||
Shared::GlobalContext globalContext;
|
||
ExpressionNode::ReductionContext redContext(&globalContext, Real, Degree, Metric, SystemForApproximation);
|
||
Expression e = parse_expression(expression, &globalContext, false);
|
||
Expression u1;
|
||
e = e.reduceAndRemoveUnit(redContext, &u1);
|
||
Expression e2 = parse_expression(unit, &globalContext, false);
|
||
Expression u2;
|
||
e2.reduceAndRemoveUnit(redContext, &u2);
|
||
quiz_assert_print_if_failure(u1.isUninitialized() == u2.isUninitialized() && (u1.isUninitialized() || u1.isIdenticalTo(u2)), expression);
|
||
}
|
||
|
||
QUIZ_CASE(poincare_properties_remove_unit) {
|
||
assert_reduced_expression_unit_is("_km", "_m");
|
||
assert_reduced_expression_unit_is("_min/_km", "_m^(-1)×_s");
|
||
assert_reduced_expression_unit_is("_km^3", "_m^3");
|
||
assert_reduced_expression_unit_is("1_m+_km", "_m");
|
||
assert_reduced_expression_unit_is("_L^2×3×_s", "_m^6×_s");
|
||
}
|
||
|
||
void assert_additional_results_compute_to(const char * expression, const char * * results, int length, Preferences::UnitFormat unitFormat = Metric) {
|
||
Shared::GlobalContext globalContext;
|
||
constexpr int maxNumberOfResults = 5;
|
||
assert(length <= maxNumberOfResults);
|
||
Expression additional[maxNumberOfResults];
|
||
ExpressionNode::ReductionContext reductionContext = ExpressionNode::ReductionContext(&globalContext, Cartesian, Degree, unitFormat, User, ReplaceAllSymbolsWithUndefined, DefaultUnitConversion);
|
||
Expression units;
|
||
Expression e = parse_expression(expression, &globalContext, false).reduceAndRemoveUnit(reductionContext, &units);
|
||
double value = e.approximateToScalar<double>(&globalContext, Cartesian, Degree);
|
||
|
||
if (!Unit::HaveAdditionalOutputs(value, units, unitFormat)) {
|
||
quiz_assert(length == 0);
|
||
return;
|
||
}
|
||
I18n::Message unitMessage;
|
||
const int numberOfResults = Unit::SetAdditionalExpressionsAndMessage(units, value, additional, maxNumberOfResults, reductionContext, &unitMessage);
|
||
|
||
quiz_assert(numberOfResults == length);
|
||
for (int i = 0; i < length; i++) {
|
||
assert_expression_serialize_to(additional[i], results[i], Preferences::PrintFloatMode::Decimal);
|
||
}
|
||
}
|
||
|
||
QUIZ_CASE(poincare_expression_additional_results) {
|
||
// Time
|
||
assert_additional_results_compute_to("3×_s", nullptr, 0);
|
||
const char * array1[1] = {"1×_min+1×_s"};
|
||
assert_additional_results_compute_to("61×_s", array1, 1);
|
||
const char * array2[1] = {"1×_day+10×_h+17×_min+36×_s"};
|
||
assert_additional_results_compute_to("123456×_s", array2, 1);
|
||
const char * array3[1] = {"7×_day"};
|
||
assert_additional_results_compute_to("1×_week", array3, 1);
|
||
|
||
// Distance
|
||
const char * array4[1] = {"19×_mi+853×_yd+1×_ft+7×_in"};
|
||
assert_additional_results_compute_to("1234567×_in", array4, 1, Imperial);
|
||
const char * array5[1] = {"1×_yd+7.700787×_in"};
|
||
assert_additional_results_compute_to("1.11×_m", array5, 1, Imperial);
|
||
assert_additional_results_compute_to("1.11×_m", nullptr, 0, Metric);
|
||
|
||
// Masses
|
||
const char * array6[1] = {"1×_shtn+240×_lb"};
|
||
assert_additional_results_compute_to("1×_lgtn", array6, 1, Imperial);
|
||
const char * array7[1] = {"2×_lb+3.273962×_oz"};
|
||
assert_additional_results_compute_to("1×_kg", array7, 1, Imperial);
|
||
assert_additional_results_compute_to("1×_kg", nullptr, 0, Metric);
|
||
|
||
// Temperatures
|
||
const char * array14[2] = {"-273.15×_°C", "-459.67×_°F"};
|
||
assert_additional_results_compute_to("0×_K", array14, 2, Metric);
|
||
const char * array15[2] = {"-279.67×_°F", "-173.15×_°C"};
|
||
assert_additional_results_compute_to("100×_K", array15, 2, Imperial);
|
||
const char * array16[2] = {"12.02×_°F", "262.05×_K"};
|
||
assert_additional_results_compute_to("-11.1×_°C", array16, 2);
|
||
const char * array17[2] = {"-20×_°C", "253.15×_K"};
|
||
assert_additional_results_compute_to("-4×_°F", array17, 2);
|
||
|
||
// Energy
|
||
const char * array8[3] = {"3.6×_MJ", "1×_kW×_h", "2.246943ᴇ13×_TeV"};
|
||
assert_additional_results_compute_to("3.6×_MN_m", array8, 3);
|
||
|
||
// Volume
|
||
const char * array9[2] = {"264×_gal+1×_pt+0.7528377×_cup", "1000×_L"};
|
||
assert_additional_results_compute_to("1×_m^3", array9, 2, Imperial);
|
||
const char * array10[2] = {"48×_gal+1×_pt+1.5625×_cup", "182.5426×_L"};
|
||
assert_additional_results_compute_to("12345×_tbsp", array10, 2, Imperial);
|
||
const char * array11[2] = {"182.5426×_L"};
|
||
assert_additional_results_compute_to("12345×_tbsp", array11, 1, Metric);
|
||
|
||
// Speed
|
||
const char * array12[1] = {"3.6×_km×_h^\x12-1\x13"};
|
||
assert_additional_results_compute_to("1×_m/_s", array12, 1, Metric);
|
||
const char * array13[2] = {"2.236936×_mi×_h^\x12-1\x13", "3.6×_km×_h^\x12-1\x13"};
|
||
assert_additional_results_compute_to("1×_m/_s", array13, 2, Imperial);
|
||
}
|