Files
Upsilon/apps/probability/distribution/normal_distribution.cpp
2019-08-23 13:47:52 +02:00

73 lines
2.1 KiB
C++

#include "normal_distribution.h"
#include <poincare/normal_distribution.h>
#include <assert.h>
#include <cmath>
#include <float.h>
#include <ion.h>
namespace Probability {
float NormalDistribution::yMax() const {
float maxAbscissa = m_parameter1;
float result = evaluateAtAbscissa(maxAbscissa);
if (std::isnan(result) || result <= 0.0f) {
result = 1.0f;
}
return result * (1.0f + k_displayTopMarginRatio);
}
I18n::Message NormalDistribution::parameterNameAtIndex(int index) {
if (index == 0) {
return I18n::Message::Mu;
}
assert(index == 1);
return I18n::Message::Sigma;
}
I18n::Message NormalDistribution::parameterDefinitionAtIndex(int index) {
if (index == 0) {
return I18n::Message::MeanDefinition;
}
assert(index == 1);
return I18n::Message::DeviationDefinition;
}
float NormalDistribution::evaluateAtAbscissa(float x) const {
return Poincare::NormalDistribution::EvaluateAtAbscissa(x, m_parameter1, m_parameter2);
}
bool NormalDistribution::authorizedValueAtIndex(float x, int index) const {
if (index == 0) {
return true;
}
if (x <= FLT_MIN || std::fabs(m_parameter1/x) > k_maxRatioMuSigma) {
return false;
}
return true;
}
void NormalDistribution::setParameterAtIndex(float f, int index) {
TwoParameterDistribution::setParameterAtIndex(f, index);
if (index == 0 && std::fabs(m_parameter1/m_parameter2) > k_maxRatioMuSigma) {
m_parameter2 = m_parameter1/k_maxRatioMuSigma;
}
}
double NormalDistribution::cumulativeDistributiveFunctionAtAbscissa(double x) const {
return Poincare::NormalDistribution::CumulativeDistributiveFunctionAtAbscissa<float>(x, m_parameter1, m_parameter2);
}
double NormalDistribution::cumulativeDistributiveInverseForProbability(double * probability) {
return Poincare::NormalDistribution::CumulativeDistributiveInverseForProbability<float>(*probability, m_parameter1, m_parameter2);
}
float NormalDistribution::xExtremum(bool min) const {
int coefficient = (min ? -1 : 1);
if (m_parameter2 == 0.0f) {
return m_parameter1 + coefficient * 1.0f;
}
return m_parameter1 + coefficient * 5.0f * std::fabs(m_parameter2);
}
}