mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-18 16:27:34 +01:00
73 lines
2.1 KiB
C++
73 lines
2.1 KiB
C++
#include "normal_distribution.h"
|
|
#include <poincare/normal_distribution.h>
|
|
#include <assert.h>
|
|
#include <cmath>
|
|
#include <float.h>
|
|
#include <ion.h>
|
|
|
|
namespace Probability {
|
|
|
|
float NormalDistribution::yMax() const {
|
|
float maxAbscissa = m_parameter1;
|
|
float result = evaluateAtAbscissa(maxAbscissa);
|
|
if (std::isnan(result) || result <= 0.0f) {
|
|
result = 1.0f;
|
|
}
|
|
return result * (1.0f + k_displayTopMarginRatio);
|
|
}
|
|
|
|
I18n::Message NormalDistribution::parameterNameAtIndex(int index) {
|
|
if (index == 0) {
|
|
return I18n::Message::Mu;
|
|
}
|
|
assert(index == 1);
|
|
return I18n::Message::Sigma;
|
|
}
|
|
|
|
I18n::Message NormalDistribution::parameterDefinitionAtIndex(int index) {
|
|
if (index == 0) {
|
|
return I18n::Message::MeanDefinition;
|
|
}
|
|
assert(index == 1);
|
|
return I18n::Message::DeviationDefinition;
|
|
}
|
|
|
|
float NormalDistribution::evaluateAtAbscissa(float x) const {
|
|
return Poincare::NormalDistribution::EvaluateAtAbscissa(x, m_parameter1, m_parameter2);
|
|
}
|
|
|
|
bool NormalDistribution::authorizedValueAtIndex(float x, int index) const {
|
|
if (index == 0) {
|
|
return true;
|
|
}
|
|
if (x <= FLT_MIN || std::fabs(m_parameter1/x) > k_maxRatioMuSigma) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void NormalDistribution::setParameterAtIndex(float f, int index) {
|
|
TwoParameterDistribution::setParameterAtIndex(f, index);
|
|
if (index == 0 && std::fabs(m_parameter1/m_parameter2) > k_maxRatioMuSigma) {
|
|
m_parameter2 = m_parameter1/k_maxRatioMuSigma;
|
|
}
|
|
}
|
|
|
|
double NormalDistribution::cumulativeDistributiveFunctionAtAbscissa(double x) const {
|
|
return Poincare::NormalDistribution::CumulativeDistributiveFunctionAtAbscissa<float>(x, m_parameter1, m_parameter2);
|
|
}
|
|
|
|
double NormalDistribution::cumulativeDistributiveInverseForProbability(double * probability) {
|
|
return Poincare::NormalDistribution::CumulativeDistributiveInverseForProbability<float>(*probability, m_parameter1, m_parameter2);
|
|
}
|
|
|
|
float NormalDistribution::xExtremum(bool min) const {
|
|
int coefficient = (min ? -1 : 1);
|
|
if (m_parameter2 == 0.0f) {
|
|
return m_parameter1 + coefficient * 1.0f;
|
|
}
|
|
return m_parameter1 + coefficient * 5.0f * std::fabs(m_parameter2);
|
|
}
|
|
|
|
}
|