mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-18 16:27:34 +01:00
120 lines
4.7 KiB
C++
120 lines
4.7 KiB
C++
#include <poincare/erf_inv.h>
|
|
#include <cmath>
|
|
#include <float.h>
|
|
|
|
namespace Poincare {
|
|
|
|
/*
|
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed with
|
|
* this work for additional information regarding copyright ownership.
|
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
|
* (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable distribution or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/* This implementation is described in the paper:
|
|
* Approximating the erfinv function, Mike Giles,
|
|
* Oxford-Man Institute of Quantitative Finance,
|
|
* which was published in GPU Computing Gems, volume 2, 2010.
|
|
*/
|
|
|
|
/* The original Appache implementation has been modified to use the libc
|
|
* library. */
|
|
double erfInv(double x) {
|
|
// beware that the logarithm argument must be
|
|
// commputed as (1.0 - x) * (1.0 + x),
|
|
// it must NOT be simplified as 1.0 - x * x as this
|
|
// would induce rounding errors near the boundaries +/-1
|
|
double w = - std::log((1.0 - x) * (1.0 + x));
|
|
double p;
|
|
|
|
if (w < 6.25) {
|
|
w = w - 3.125;
|
|
p = -3.6444120640178196996e-21;
|
|
p = -1.685059138182016589e-19 + p * w;
|
|
p = 1.2858480715256400167e-18 + p * w;
|
|
p = 1.115787767802518096e-17 + p * w;
|
|
p = -1.333171662854620906e-16 + p * w;
|
|
p = 2.0972767875968561637e-17 + p * w;
|
|
p = 6.6376381343583238325e-15 + p * w;
|
|
p = -4.0545662729752068639e-14 + p * w;
|
|
p = -8.1519341976054721522e-14 + p * w;
|
|
p = 2.6335093153082322977e-12 + p * w;
|
|
p = -1.2975133253453532498e-11 + p * w;
|
|
p = -5.4154120542946279317e-11 + p * w;
|
|
p = 1.051212273321532285e-09 + p * w;
|
|
p = -4.1126339803469836976e-09 + p * w;
|
|
p = -2.9070369957882005086e-08 + p * w;
|
|
p = 4.2347877827932403518e-07 + p * w;
|
|
p = -1.3654692000834678645e-06 + p * w;
|
|
p = -1.3882523362786468719e-05 + p * w;
|
|
p = 0.0001867342080340571352 + p * w;
|
|
p = -0.00074070253416626697512 + p * w;
|
|
p = -0.0060336708714301490533 + p * w;
|
|
p = 0.24015818242558961693 + p * w;
|
|
p = 1.6536545626831027356 + p * w;
|
|
} else if (w < 16.0) {
|
|
w = std::sqrt(w) - 3.25;
|
|
p = 2.2137376921775787049e-09;
|
|
p = 9.0756561938885390979e-08 + p * w;
|
|
p = -2.7517406297064545428e-07 + p * w;
|
|
p = 1.8239629214389227755e-08 + p * w;
|
|
p = 1.5027403968909827627e-06 + p * w;
|
|
p = -4.013867526981545969e-06 + p * w;
|
|
p = 2.9234449089955446044e-06 + p * w;
|
|
p = 1.2475304481671778723e-05 + p * w;
|
|
p = -4.7318229009055733981e-05 + p * w;
|
|
p = 6.8284851459573175448e-05 + p * w;
|
|
p = 2.4031110387097893999e-05 + p * w;
|
|
p = -0.0003550375203628474796 + p * w;
|
|
p = 0.00095328937973738049703 + p * w;
|
|
p = -0.0016882755560235047313 + p * w;
|
|
p = 0.0024914420961078508066 + p * w;
|
|
p = -0.0037512085075692412107 + p * w;
|
|
p = 0.005370914553590063617 + p * w;
|
|
p = 1.0052589676941592334 + p * w;
|
|
p = 3.0838856104922207635 + p * w;
|
|
} else if (!std::isinf(w)) {
|
|
w = std::sqrt(w) - 5.0;
|
|
p = -2.7109920616438573243e-11;
|
|
p = -2.5556418169965252055e-10 + p * w;
|
|
p = 1.5076572693500548083e-09 + p * w;
|
|
p = -3.7894654401267369937e-09 + p * w;
|
|
p = 7.6157012080783393804e-09 + p * w;
|
|
p = -1.4960026627149240478e-08 + p * w;
|
|
p = 2.9147953450901080826e-08 + p * w;
|
|
p = -6.7711997758452339498e-08 + p * w;
|
|
p = 2.2900482228026654717e-07 + p * w;
|
|
p = -9.9298272942317002539e-07 + p * w;
|
|
p = 4.5260625972231537039e-06 + p * w;
|
|
p = -1.9681778105531670567e-05 + p * w;
|
|
p = 7.5995277030017761139e-05 + p * w;
|
|
p = -0.00021503011930044477347 + p * w;
|
|
p = -0.00013871931833623122026 + p * w;
|
|
p = 1.0103004648645343977 + p * w;
|
|
p = 4.8499064014085844221 + p * w;
|
|
} else {
|
|
// this branch does not appears in the original code, it
|
|
// was added because the previous branch does not handle
|
|
// x = +/-1 correctly. In this case, w is positive infinity
|
|
// and as the first coefficient (-2.71e-11) is negative.
|
|
// Once the first multiplication is done, p becomes negative
|
|
// infinity and remains so throughout the polynomial evaluation.
|
|
// So the branch above incorrectly returns negative infinity
|
|
// instead of the correct positive infinity.
|
|
p = INFINITY;
|
|
}
|
|
return p * x;
|
|
}
|
|
|
|
}
|