mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 00:37:25 +01:00
Multiplication::privateShallowReduce can create an Undef node by
multiplying 0 and inf. In this case, we set the whole multiplication to
undef, to avoid things such as undef*π.
This fixes the following bug :
- In Graph, enter i*inf*π as one of the bounds. An assertion fails in
Multiplication::removeUnit.
Change-Id: Ie9d0d561d6e310f52220b98541f22a4b5e56762c
1166 lines
50 KiB
C++
1166 lines
50 KiB
C++
#include <poincare/multiplication.h>
|
||
#include <poincare/addition.h>
|
||
#include <poincare/arithmetic.h>
|
||
#include <poincare/derivative.h>
|
||
#include <poincare/division.h>
|
||
#include <poincare/float.h>
|
||
#include <poincare/infinity.h>
|
||
#include <poincare/layout_helper.h>
|
||
#include <poincare/matrix.h>
|
||
#include <poincare/opposite.h>
|
||
#include <poincare/parenthesis.h>
|
||
#include <poincare/power.h>
|
||
#include <poincare/rational.h>
|
||
#include <poincare/subtraction.h>
|
||
#include <poincare/serialization_helper.h>
|
||
#include <poincare/tangent.h>
|
||
#include <poincare/undefined.h>
|
||
#include <poincare/unit.h>
|
||
#include <ion.h>
|
||
#include <assert.h>
|
||
#include <cmath>
|
||
#include <utility>
|
||
#include <algorithm>
|
||
|
||
namespace Poincare {
|
||
|
||
/* Multiplication Node */
|
||
|
||
ExpressionNode::Sign MultiplicationNode::sign(Context * context) const {
|
||
if (numberOfChildren() == 0) {
|
||
return Sign::Unknown;
|
||
}
|
||
int sign = 1;
|
||
for (ExpressionNode * c : children()) {
|
||
sign *= (int)(c->sign(context));
|
||
}
|
||
if (sign == 0) {
|
||
return ExpressionNode::sign(context);
|
||
}
|
||
return (Sign)sign;
|
||
}
|
||
|
||
int MultiplicationNode::polynomialDegree(Context * context, const char * symbolName) const {
|
||
int degree = 0;
|
||
for (ExpressionNode * c : children()) {
|
||
int d = c->polynomialDegree(context, symbolName);
|
||
if (d < 0) {
|
||
return -1;
|
||
}
|
||
degree += d;
|
||
}
|
||
return degree;
|
||
}
|
||
|
||
int MultiplicationNode::getPolynomialCoefficients(Context * context, const char * symbolName, Expression coefficients[], ExpressionNode::SymbolicComputation symbolicComputation) const {
|
||
return Multiplication(this).getPolynomialCoefficients(context, symbolName, coefficients, symbolicComputation);
|
||
}
|
||
|
||
bool MultiplicationNode::childAtIndexNeedsUserParentheses(const Expression & child, int childIndex) const {
|
||
if (NAryInfixExpressionNode::childAtIndexNeedsUserParentheses(child, childIndex)) {
|
||
return true;
|
||
}
|
||
Type types[] = {Type::Subtraction, Type::Addition};
|
||
return child.isOfType(types, 2);
|
||
}
|
||
|
||
Expression MultiplicationNode::removeUnit(Expression * unit) {
|
||
return Multiplication(this).removeUnit(unit);
|
||
}
|
||
|
||
template<typename T>
|
||
MatrixComplex<T> MultiplicationNode::computeOnMatrices(const MatrixComplex<T> m, const MatrixComplex<T> n, Preferences::ComplexFormat complexFormat) {
|
||
if (m.numberOfColumns() != n.numberOfRows()) {
|
||
return MatrixComplex<T>::Undefined();
|
||
}
|
||
MatrixComplex<T> result = MatrixComplex<T>::Builder();
|
||
for (int i = 0; i < m.numberOfRows(); i++) {
|
||
for (int j = 0; j < n.numberOfColumns(); j++) {
|
||
std::complex<T> c(0.0);
|
||
for (int k = 0; k < m.numberOfColumns(); k++) {
|
||
c += m.complexAtIndex(i*m.numberOfColumns()+k)*n.complexAtIndex(k*n.numberOfColumns()+j);
|
||
}
|
||
result.addChildAtIndexInPlace(Complex<T>::Builder(c), i*n.numberOfColumns()+j, result.numberOfChildren());
|
||
}
|
||
}
|
||
result.setDimensions(m.numberOfRows(), n.numberOfColumns());
|
||
return result;
|
||
}
|
||
|
||
Expression MultiplicationNode::setSign(Sign s, ReductionContext reductionContext) {
|
||
assert(s == ExpressionNode::Sign::Positive);
|
||
return Multiplication(this).setSign(s, reductionContext);
|
||
}
|
||
|
||
/* Operative symbol between two expressions depends on the layout shape on the
|
||
* left and the right of the operator:
|
||
*
|
||
* | Decimal | Integer | OneLetter | MoreLetters | BundaryPunct. | Root | NthRoot | Fraction | Hexa/Binary
|
||
* --------------+---------+---------+-----------+-------------+---------------+------+---------+----------+-------------
|
||
* Decimal | × | x | ø | × | × | × | × | × | •
|
||
* --------------+---------+---------+-----------+-------------+---------------+------+---------+----------+-------------
|
||
* Integer | × | x | ø | • | ø | ø | • | × | •
|
||
* --------------+---------+---------+-----------+-------------+---------------+------+---------+----------+-------------
|
||
* OneLetter | × | • | • | • | • | ø | • | ø | •
|
||
* --------------+---------+---------+-----------+-------------+---------------+------+---------+----------+-------------
|
||
* MoreLetters | × | • | • | • | • | ø | • | ø | •
|
||
* --------------+---------+---------+-----------+-------------+---------------+------+---------+----------+-------------
|
||
* BundaryPunct. | × | x | ø | ø | ø | ø | • | × | •
|
||
* --------------+---------+---------+-----------+-------------+---------------+------+---------+----------+-------------
|
||
* Root | × | x | ø | ø | ø | ø | • | × | •
|
||
* --------------+---------+---------+-----------+-------------+---------------+------+---------+----------+-------------
|
||
* Fraction | × | x | ø | ø | ø | ø | • | × | •
|
||
* --------------+---------+---------+-----------+-------------+---------------+------+---------+----------+-------------
|
||
* RightOfPower | × | x | ø | ø | ø | ø | • | × | •
|
||
* --------------+---------+---------+-----------+-------------+---------------+------+---------+----------+-------------
|
||
* Hexa/Binary | • | • | • | • | • | • | • | • | •
|
||
*
|
||
* */
|
||
|
||
static int operatorSymbolBetween(ExpressionNode::LayoutShape left, ExpressionNode::LayoutShape right) {
|
||
switch (left) {
|
||
case ExpressionNode::LayoutShape::BinaryHexadecimal:
|
||
return 1;
|
||
case ExpressionNode::LayoutShape::Decimal:
|
||
switch (right) {
|
||
case ExpressionNode::LayoutShape::OneLetter:
|
||
return 0;
|
||
case ExpressionNode::LayoutShape::BinaryHexadecimal:
|
||
return 1;
|
||
default:
|
||
return 2;
|
||
}
|
||
case ExpressionNode::LayoutShape::Integer:
|
||
switch (right) {
|
||
case ExpressionNode::LayoutShape::Integer:
|
||
case ExpressionNode::LayoutShape::Decimal:
|
||
case ExpressionNode::LayoutShape::Fraction:
|
||
return 2;
|
||
case ExpressionNode::LayoutShape::MoreLetters:
|
||
case ExpressionNode::LayoutShape::NthRoot:
|
||
case ExpressionNode::LayoutShape::BinaryHexadecimal:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
case ExpressionNode::LayoutShape::OneLetter:
|
||
case ExpressionNode::LayoutShape::MoreLetters:
|
||
switch (right) {
|
||
case ExpressionNode::LayoutShape::Decimal:
|
||
return 2;
|
||
case ExpressionNode::LayoutShape::Fraction:
|
||
case ExpressionNode::LayoutShape::Root:
|
||
return 0;
|
||
default:
|
||
return 1;
|
||
}
|
||
default:
|
||
//case ExpressionNode::LayoutShape::BoundaryPunctuation:
|
||
//case ExpressionNode::LayoutShape::Fraction:
|
||
//case ExpressionNode::LayoutShape::Root:
|
||
//case ExpressionNode::LayoutShape::RightOfPower:
|
||
switch (right) {
|
||
case ExpressionNode::LayoutShape::Decimal:
|
||
case ExpressionNode::LayoutShape::Integer:
|
||
case ExpressionNode::LayoutShape::Fraction:
|
||
return 2;
|
||
case ExpressionNode::LayoutShape::BinaryHexadecimal:
|
||
case ExpressionNode::LayoutShape::NthRoot:
|
||
return 1;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
CodePoint MultiplicationNode::operatorSymbol() const {
|
||
/* ø --> 0
|
||
* · --> 1
|
||
* × --> 2 */
|
||
int sign = -1;
|
||
for (int i = 0; i < numberOfChildren() - 1; i++) {
|
||
/* The operator symbol must be the same for all operands of the multiplication.
|
||
* If one operator has to be '×', they will all be '×'. Idem for '·'. */
|
||
sign = std::max(sign, operatorSymbolBetween(childAtIndex(i)->rightLayoutShape(), childAtIndex(i+1)->leftLayoutShape()));
|
||
}
|
||
switch (sign) {
|
||
case 0:
|
||
return UCodePointNull;
|
||
case 1:
|
||
return UCodePointMiddleDot;
|
||
default:
|
||
return UCodePointMultiplicationSign;
|
||
}
|
||
}
|
||
|
||
Layout MultiplicationNode::createLayout(Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
|
||
constexpr int stringMaxSize = CodePoint::MaxCodePointCharLength + 1;
|
||
char string[stringMaxSize];
|
||
SerializationHelper::CodePoint(string, stringMaxSize, operatorSymbol());
|
||
return LayoutHelper::Infix(Multiplication(this), floatDisplayMode, numberOfSignificantDigits, string);
|
||
}
|
||
|
||
int MultiplicationNode::serialize(char * buffer, int bufferSize, Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
|
||
constexpr int stringMaxSize = CodePoint::MaxCodePointCharLength + 1;
|
||
char string[stringMaxSize];
|
||
SerializationHelper::CodePoint(string, stringMaxSize, UCodePointMultiplicationSign);
|
||
return SerializationHelper::Infix(this, buffer, bufferSize, floatDisplayMode, numberOfSignificantDigits, string);
|
||
}
|
||
|
||
Expression MultiplicationNode::shallowReduce(ReductionContext reductionContext) {
|
||
return Multiplication(this).shallowReduce(reductionContext);
|
||
}
|
||
|
||
Expression MultiplicationNode::shallowBeautify(ReductionContext reductionContext) {
|
||
return Multiplication(this).shallowBeautify(reductionContext);
|
||
}
|
||
|
||
Expression MultiplicationNode::denominator(ReductionContext reductionContext) const {
|
||
return Multiplication(this).denominator(reductionContext);
|
||
}
|
||
|
||
bool MultiplicationNode::derivate(ReductionContext reductionContext, Expression symbol, Expression symbolValue) {
|
||
return Multiplication(this).derivate(reductionContext, symbol, symbolValue);
|
||
}
|
||
|
||
/* Multiplication */
|
||
|
||
int Multiplication::getPolynomialCoefficients(Context * context, const char * symbolName, Expression coefficients[], ExpressionNode::SymbolicComputation symbolicComputation) const {
|
||
int deg = polynomialDegree(context, symbolName);
|
||
if (deg < 0 || deg > Expression::k_maxPolynomialDegree) {
|
||
return -1;
|
||
}
|
||
// Initialization of coefficients
|
||
for (int i = 1; i <= deg; i++) {
|
||
coefficients[i] = Rational::Builder(0);
|
||
}
|
||
coefficients[0] = Rational::Builder(1);
|
||
|
||
Expression intermediateCoefficients[Expression::k_maxNumberOfPolynomialCoefficients];
|
||
// Let's note result = a(0)+a(1)*X+a(2)*X^2+a(3)*x^3+..
|
||
for (int i = 0; i < numberOfChildren(); i++) {
|
||
// childAtIndex(i) = b(0)+b(1)*X+b(2)*X^2+b(3)*x^3+...
|
||
int degI = childAtIndex(i).getPolynomialCoefficients(context, symbolName, intermediateCoefficients, symbolicComputation);
|
||
assert(degI <= Expression::k_maxPolynomialDegree);
|
||
for (int j = deg; j > 0; j--) {
|
||
// new coefficients[j] = b(0)*a(j)+b(1)*a(j-1)+b(2)*a(j-2)+...
|
||
Addition a = Addition::Builder();
|
||
int jbis = j > degI ? degI : j;
|
||
for (int l = 0; l <= jbis ; l++) {
|
||
// Always copy the a and b coefficients are they are used multiple times
|
||
a.addChildAtIndexInPlace(Multiplication::Builder(intermediateCoefficients[l].clone(), coefficients[j-l].clone()), a.numberOfChildren(), a.numberOfChildren());
|
||
}
|
||
/* a(j) and b(j) are used only to compute coefficient at rank >= j, we
|
||
* can delete them as we compute new coefficient by decreasing ranks. */
|
||
coefficients[j] = a;
|
||
}
|
||
// new coefficients[0] = a(0)*b(0)
|
||
coefficients[0] = Multiplication::Builder(coefficients[0], intermediateCoefficients[0]);
|
||
}
|
||
return deg;
|
||
}
|
||
|
||
Expression Multiplication::removeUnit(Expression * unit) {
|
||
Multiplication unitMult = Multiplication::Builder();
|
||
int resultChildrenCount = 0;
|
||
for (int i = 0; i < numberOfChildren(); i++) {
|
||
Expression childI = childAtIndex(i);
|
||
assert(!childI.isUndefined());
|
||
Expression currentUnit;
|
||
childI = childI.removeUnit(¤tUnit);
|
||
if (childI.isUndefined()) {
|
||
/* If the child was a unit convert, it replaced itself with an undefined
|
||
* during the removeUnit. */
|
||
*unit = Expression();
|
||
return replaceWithUndefinedInPlace();
|
||
}
|
||
if (!currentUnit.isUninitialized()) {
|
||
unitMult.addChildAtIndexInPlace(currentUnit, resultChildrenCount, resultChildrenCount);
|
||
resultChildrenCount++;
|
||
assert(childAtIndex(i).isRationalOne());
|
||
removeChildAtIndexInPlace(i--);
|
||
}
|
||
}
|
||
if (resultChildrenCount == 0) {
|
||
*unit = Expression();
|
||
} else {
|
||
*unit = unitMult.squashUnaryHierarchyInPlace();
|
||
}
|
||
if (numberOfChildren() == 0) {
|
||
Expression one = Rational::Builder(1);
|
||
replaceWithInPlace(one);
|
||
return one;
|
||
}
|
||
return squashUnaryHierarchyInPlace();
|
||
}
|
||
|
||
template<typename T>
|
||
void Multiplication::computeOnArrays(T * m, T * n, T * result, int mNumberOfColumns, int mNumberOfRows, int nNumberOfColumns) {
|
||
for (int i = 0; i < mNumberOfRows; i++) {
|
||
for (int j = 0; j < nNumberOfColumns; j++) {
|
||
T res = 0.0f;
|
||
for (int k = 0; k < mNumberOfColumns; k++) {
|
||
res+= m[i*mNumberOfColumns+k]*n[k*nNumberOfColumns+j];
|
||
}
|
||
result[i*nNumberOfColumns+j] = res;
|
||
}
|
||
}
|
||
}
|
||
|
||
Expression Multiplication::setSign(ExpressionNode::Sign s, ExpressionNode::ReductionContext reductionContext) {
|
||
assert(s == ExpressionNode::Sign::Positive);
|
||
for (int i = 0; i < numberOfChildren(); i++) {
|
||
if (childAtIndex(i).sign(reductionContext.context()) == ExpressionNode::Sign::Negative) {
|
||
replaceChildAtIndexInPlace(i, childAtIndex(i).setSign(s, reductionContext));
|
||
}
|
||
}
|
||
return shallowReduce(reductionContext);
|
||
}
|
||
|
||
Expression Multiplication::shallowReduce(ExpressionNode::ReductionContext reductionContext) {
|
||
return privateShallowReduce(reductionContext, true, true);
|
||
}
|
||
|
||
static bool CanSimplifyUnitProduct(
|
||
const Unit::Dimension::Vector<int> &unitsExponents, size_t &unitsSupportSize,
|
||
const Unit::Dimension::Vector<int8_t> *entryUnitExponents, int8_t entryUnitExponent,
|
||
int8_t &bestUnitExponent, Unit::Dimension::Vector<int> &bestRemainderExponents, size_t &bestRemainderSupportSize) {
|
||
/* This function tries to simplify a Unit product (given as the
|
||
* 'unitsExponents' int array), by applying a given operation. If the
|
||
* result of the operation is simpler, 'bestUnit' and
|
||
* 'bestRemainder' are updated accordingly. */
|
||
Unit::Dimension::Vector<int> simplifiedExponents;
|
||
|
||
#if 0
|
||
/* In the current algorithm, simplification is attempted using derived units
|
||
* with no exponents. Some good simplifications might be missed:
|
||
* For instance with _A^2*_s^2, a first attempt will be to simplify to
|
||
* _C_A_s which has a bigger supportSize and will not be kept, the output
|
||
* will stay _A^2*_s^2.
|
||
* With the commented code, this issue is solved by trying to simplify with
|
||
* the highest exponent possible, so that, in this example, _A^2*_s^2 can be
|
||
* simplified to _C^2.
|
||
* An optimization might be possible using algorithms minimizing the sum of
|
||
* absolute difference of array elements */
|
||
int n = 0;
|
||
int best_norm;
|
||
// TODO define a norm function summing all base units exponents
|
||
int norm_temp = unitsExponents.norm();
|
||
/* To extend this algorithm to square root simplifications, rational exponents
|
||
* can be handled, and a 1/2 step can be used (but it should be asserted that
|
||
* no square root simplification is performed if all exponents are integers.*/
|
||
int step = 1;
|
||
for (size_t i = 0; i < Unit::NumberOfBaseUnits; i++) {
|
||
// Set simplifiedExponents to unitsExponents
|
||
simplifiedExponents.setCoefficientAtIndex(i, unitsExponents.coefficientAtIndex(i));
|
||
}
|
||
do {
|
||
best_norm = norm_temp;
|
||
n+= step;
|
||
for (size_t i = 0; i < Unit::NumberOfBaseUnits; i++) {
|
||
// Simplify unitsExponents with base units from derived unit
|
||
simplifiedExponents.setCoefficientAtIndex(i, simplifiedExponents.coefficientAtIndex(i) - entryUnitExponent * step * entryUnitExponents->coefficientAtIndex(i));
|
||
}
|
||
int simplifiedNorm = simplifiedExponents.norm();
|
||
// Temp norm is derived norm (n) + simplified norm
|
||
norm_temp = n + simplifiedNorm;
|
||
} while (norm_temp < best_norm);
|
||
// Undo last step as it did not reduce the norm
|
||
n -= step;
|
||
#endif
|
||
|
||
for (size_t i = 0; i < Unit::NumberOfBaseUnits; i++) {
|
||
#if 0
|
||
// Undo last step as it did not reduce the norm
|
||
simplifiedExponents.setCoefficientAtIndex(i, simplifiedExponents.coefficientAtIndex(i) + entryUnitExponent * step * entryUnitExponents->coefficientAtIndex(i));
|
||
#else
|
||
// Simplify unitsExponents with base units from derived unit
|
||
simplifiedExponents.setCoefficientAtIndex(i, unitsExponents.coefficientAtIndex(i) - entryUnitExponent * entryUnitExponents->coefficientAtIndex(i));
|
||
#endif
|
||
}
|
||
size_t simplifiedSupportSize = simplifiedExponents.supportSize();
|
||
/* Note: A metric is considered simpler if the support size (number of
|
||
* symbols) is reduced. A norm taking coefficients into account is possible.
|
||
* One could use the sum of all coefficients to favor _C_s from _A_s^2.
|
||
* However, replacing _m_s^-2 with _N_kg^-1 should be avoided. */
|
||
bool isSimpler = (1 + simplifiedSupportSize < unitsSupportSize);
|
||
|
||
if (isSimpler) {
|
||
#if 0
|
||
bestUnitExponent = entryUnitExponent * n * step;
|
||
#else
|
||
bestUnitExponent = entryUnitExponent;
|
||
#endif
|
||
bestRemainderExponents = simplifiedExponents;
|
||
bestRemainderSupportSize = simplifiedSupportSize;
|
||
/* unitsSupportSize is updated and will be taken into
|
||
* account in next iterations of CanSimplifyUnitProduct. */
|
||
unitsSupportSize = 1 + simplifiedSupportSize;
|
||
}
|
||
return isSimpler;
|
||
}
|
||
|
||
Expression Multiplication::shallowBeautify(ExpressionNode::ReductionContext reductionContext) {
|
||
/* Beautifying a Multiplication consists in several possible operations:
|
||
* - Add Opposite ((-3)*x -> -(3*x), useful when printing fractions)
|
||
* - Recognize derived units in the product of units
|
||
* - Creating a Division if relevant
|
||
*/
|
||
|
||
// Step 1: Turn -n*A into -(n*A)
|
||
Expression noNegativeNumeral = makePositiveAnyNegativeNumeralFactor(reductionContext);
|
||
// If one negative numeral factor was made positive, we turn the expression in an Opposite
|
||
if (!noNegativeNumeral.isUninitialized()) {
|
||
Opposite o = Opposite::Builder();
|
||
noNegativeNumeral.replaceWithInPlace(o);
|
||
o.replaceChildAtIndexInPlace(0, noNegativeNumeral);
|
||
return std::move(o);
|
||
}
|
||
|
||
Expression result;
|
||
Expression self = *this;
|
||
|
||
// Step 2: Handle the units
|
||
if (hasUnit()) {
|
||
Expression units;
|
||
self = deepReduce(reductionContext); // removeUnit has to be called on reduced expression
|
||
self = removeUnit(&units);
|
||
|
||
if (self.isUndefined() || units.isUninitialized()) {
|
||
// TODO: handle error "Invalid unit"
|
||
result = Undefined::Builder();
|
||
goto replace_by_result;
|
||
}
|
||
|
||
ExpressionNode::UnitConversion unitConversionMode = reductionContext.unitConversion();
|
||
if (unitConversionMode == ExpressionNode::UnitConversion::Default) {
|
||
/* Step 2a: Recognize derived units
|
||
* - Look up in the table of derived units, the one which itself or its inverse simplifies 'units' the most.
|
||
* - If an entry is found, simplify 'units' and add the corresponding unit or its inverse in 'unitsAccu'.
|
||
* - Repeat those steps until no more simplification is possible.
|
||
*/
|
||
Multiplication unitsAccu = Multiplication::Builder();
|
||
/* If exponents are not integers, FromBaseUnits will return the closest
|
||
* representation of units with base units and integer exponents.
|
||
* It cause no problem because once the best derived units are found,
|
||
* units is divided then multiplied by them. */
|
||
Unit::Dimension::Vector<int> unitsExponents = Unit::Dimension::Vector<int>::FromBaseUnits(units);
|
||
size_t unitsSupportSize = unitsExponents.supportSize();
|
||
Unit::Dimension::Vector<int> bestRemainderExponents;
|
||
size_t bestRemainderSupportSize;
|
||
while (unitsSupportSize > 1) {
|
||
const Unit::Dimension * bestDim = nullptr;
|
||
int8_t bestUnitExponent = 0;
|
||
// Look up in the table of derived units.
|
||
for (const Unit::Dimension * dim = Unit::DimensionTable + Unit::NumberOfBaseUnits; dim < Unit::DimensionTableUpperBound; dim++) {
|
||
const Unit::Dimension::Vector<int8_t> * entryUnitExponents = dim->vector();
|
||
// A simplification is tried by either multiplying or dividing
|
||
if (CanSimplifyUnitProduct(
|
||
unitsExponents, unitsSupportSize,
|
||
entryUnitExponents, 1,
|
||
bestUnitExponent, bestRemainderExponents, bestRemainderSupportSize
|
||
)
|
||
||
|
||
CanSimplifyUnitProduct(
|
||
unitsExponents, unitsSupportSize,
|
||
entryUnitExponents, -1,
|
||
bestUnitExponent, bestRemainderExponents, bestRemainderSupportSize
|
||
))
|
||
{
|
||
/* If successful, unitsSupportSize, bestUnitExponent,
|
||
* bestRemainderExponents and bestRemainderSupportSize have been updated*/
|
||
bestDim = dim;
|
||
}
|
||
}
|
||
if (bestDim == nullptr) {
|
||
// No simplification could be performed
|
||
break;
|
||
}
|
||
// Build and add the best derived unit
|
||
Expression derivedUnit = Unit::Builder(bestDim, bestDim->stdRepresentative(), bestDim->stdRepresentativePrefix());
|
||
|
||
#if 0
|
||
if (bestUnitExponent != 1) {
|
||
derivedUnit = Power::Builder(derivedUnit, Rational::Builder(bestUnitExponent));
|
||
}
|
||
#else
|
||
assert(bestUnitExponent == 1 || bestUnitExponent == -1);
|
||
if (bestUnitExponent == -1) {
|
||
derivedUnit = Power::Builder(derivedUnit, Rational::Builder(-1));
|
||
}
|
||
#endif
|
||
|
||
const int position = unitsAccu.numberOfChildren();
|
||
unitsAccu.addChildAtIndexInPlace(derivedUnit, position, position);
|
||
// Update remainder units and their exponents for next simplifications
|
||
unitsExponents = bestRemainderExponents;
|
||
unitsSupportSize = bestRemainderSupportSize;
|
||
}
|
||
// Apply simplifications
|
||
if (unitsAccu.numberOfChildren() > 0) {
|
||
// Divide by derived units
|
||
units = Division::Builder(units, unitsAccu.clone()).deepReduce(reductionContext);
|
||
Expression newUnits;
|
||
// Separate units and generated values
|
||
units = units.removeUnit(&newUnits);
|
||
// Assemble final value
|
||
Multiplication m = Multiplication::Builder(units);
|
||
self.replaceWithInPlace(m);
|
||
m.addChildAtIndexInPlace(self, 0, 1);
|
||
self = m;
|
||
// Update units with derived and base units
|
||
if (newUnits.isUninitialized()) {
|
||
units = unitsAccu;
|
||
} else {
|
||
units = Multiplication::Builder(unitsAccu, newUnits);
|
||
static_cast<Multiplication &>(units).mergeSameTypeChildrenInPlace();
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Step 2b: Turn into 'Float x units'.
|
||
* Choose a unit multiple adequate for the numerical value.
|
||
* An exhaustive exploration of all possible multiples would have
|
||
* exponential complexity with respect to the number of factors. Instead,
|
||
* we focus on one single factor. The first Unit factor is certainly the
|
||
* most relevant.
|
||
*/
|
||
|
||
double value = self.approximateToScalar<double>(reductionContext.context(), reductionContext.complexFormat(), reductionContext.angleUnit());
|
||
if (std::isnan(value)) {
|
||
// If the value is undefined, return "undef" without any unit
|
||
result = Undefined::Builder();
|
||
} else {
|
||
if (unitConversionMode == ExpressionNode::UnitConversion::Default) {
|
||
// Find the right unit prefix
|
||
Unit::ChooseBestRepresentativeAndPrefixForValue(&units, &value, reductionContext);
|
||
}
|
||
// Build final Expression
|
||
result = Multiplication::Builder(Number::FloatNumber(value), units);
|
||
static_cast<Multiplication &>(result).mergeSameTypeChildrenInPlace();
|
||
}
|
||
} else {
|
||
// Step 3: Create a Division if relevant
|
||
Expression numer, denom;
|
||
splitIntoNormalForm(numer, denom, reductionContext);
|
||
if (!numer.isUninitialized()) {
|
||
result = numer;
|
||
}
|
||
if (!denom.isUninitialized()) {
|
||
result = Division::Builder(numer.isUninitialized() ? Rational::Builder(1) : numer, denom);
|
||
}
|
||
}
|
||
|
||
replace_by_result:
|
||
self.replaceWithInPlace(result);
|
||
return result;
|
||
}
|
||
|
||
Expression Multiplication::denominator(ExpressionNode::ReductionContext reductionContext) const {
|
||
/* TODO ?
|
||
* Turn the denominator const method into an extractDenominator method
|
||
* (non const) in the same same way as extractUnits.
|
||
* Then remove splitIntoNormalForm.
|
||
*/
|
||
Expression numer, denom;
|
||
splitIntoNormalForm(numer, denom, reductionContext);
|
||
return denom;
|
||
}
|
||
|
||
bool Multiplication::derivate(ExpressionNode::ReductionContext reductionContext, Expression symbol, Expression symbolValue) {
|
||
Addition resultingAddition = Addition::Builder();
|
||
int numberOfTerms = numberOfChildren();
|
||
assert (numberOfTerms > 0);
|
||
Expression childI;
|
||
|
||
for (int i = 0; i < numberOfTerms; ++i) {
|
||
childI = clone();
|
||
childI.replaceChildAtIndexInPlace(i, Derivative::Builder(
|
||
childI.childAtIndex(i),
|
||
symbol.clone().convert<Symbol>(),
|
||
symbolValue.clone()
|
||
));
|
||
resultingAddition.addChildAtIndexInPlace(childI, i, i);
|
||
}
|
||
|
||
replaceWithInPlace(resultingAddition);
|
||
return true;
|
||
}
|
||
|
||
Expression Multiplication::privateShallowReduce(ExpressionNode::ReductionContext reductionContext, bool shouldExpand, bool canBeInterrupted) {
|
||
{
|
||
Expression e = Expression::defaultShallowReduce();
|
||
if (e.isUndefined()) {
|
||
return e;
|
||
}
|
||
}
|
||
|
||
/* Step 1: MultiplicationNode is associative, so let's start by merging children
|
||
* which also are multiplications themselves.
|
||
* TODO If the parent Expression is a Multiplication, one should perhaps
|
||
* return now and let the parent do the reduction.
|
||
*/
|
||
mergeSameTypeChildrenInPlace();
|
||
|
||
Context * context = reductionContext.context();
|
||
|
||
// Step 2: Sort the children
|
||
sortChildrenInPlace([](const ExpressionNode * e1, const ExpressionNode * e2, bool canBeInterrupted) { return ExpressionNode::SimplificationOrder(e1, e2, true, canBeInterrupted); }, context, true);
|
||
|
||
// Step 3: Handle matrices
|
||
/* Thanks to the simplification order, all matrix children (if any) are the
|
||
* last children. */
|
||
Expression lastChild = childAtIndex(numberOfChildren()-1);
|
||
if (lastChild.type() == ExpressionNode::Type::Matrix) {
|
||
Matrix resultMatrix = static_cast<Matrix &>(lastChild);
|
||
// Use the last matrix child as the final matrix
|
||
int n = resultMatrix.numberOfRows();
|
||
int m = resultMatrix.numberOfColumns();
|
||
/* Scan accross the children to find other matrices. The last child is the
|
||
* result matrix so we start at numberOfChildren()-2. */
|
||
int multiplicationChildIndex = numberOfChildren()-2;
|
||
while (multiplicationChildIndex >= 0) {
|
||
Expression currentChild = childAtIndex(multiplicationChildIndex);
|
||
if (currentChild.type() != ExpressionNode::Type::Matrix) {
|
||
break;
|
||
}
|
||
Matrix currentMatrix = static_cast<Matrix &>(currentChild);
|
||
int currentN = currentMatrix.numberOfRows();
|
||
int currentM = currentMatrix.numberOfColumns();
|
||
if (currentM != n) {
|
||
// Matrices dimensions do not match for multiplication
|
||
return replaceWithUndefinedInPlace();
|
||
}
|
||
/* Create the matrix resulting of the multiplication of the current matrix
|
||
* and the result matrix
|
||
* resultMatrix
|
||
* i2= 0..m
|
||
* +-+-+-+-+-+
|
||
* | | | | | |
|
||
* +-+-+-+-+-+
|
||
* j=0..n | | | | | |
|
||
* +-+-+-+-+-+
|
||
* | | | | | |
|
||
* +-+-+-+-+-+
|
||
* currentMatrix
|
||
* j=0..currentM
|
||
* +---+---+---+ +-+-+-+-+-+
|
||
* | | | | | | | | | |
|
||
* +---+---+---+ +-+-+-+-+-+
|
||
* i1=0..currentN | | | | | |e| | | |
|
||
* +---+---+---+ +-+-+-+-+-+
|
||
* | | | | | | | | | |
|
||
* +---+---+---+ +-+-+-+-+-+
|
||
* */
|
||
int newResultN = currentN;
|
||
int newResultM = m;
|
||
Matrix newResult = Matrix::Builder();
|
||
for (int i = 0; i < newResultN; i++) {
|
||
for (int j = 0; j < newResultM; j++) {
|
||
Addition a = Addition::Builder();
|
||
for (int k = 0; k < n; k++) {
|
||
Expression e = Multiplication::Builder(currentMatrix.matrixChild(i, k).clone(), resultMatrix.matrixChild(k, j).clone());
|
||
a.addChildAtIndexInPlace(e, a.numberOfChildren(), a.numberOfChildren());
|
||
e.shallowReduce(reductionContext);
|
||
}
|
||
newResult.addChildAtIndexInPlace(a, newResult.numberOfChildren(), newResult.numberOfChildren());
|
||
a.shallowReduce(reductionContext);
|
||
}
|
||
}
|
||
newResult.setDimensions(newResultN, newResultM);
|
||
n = newResultN;
|
||
m = newResultM;
|
||
removeChildInPlace(currentMatrix, currentMatrix.numberOfChildren());
|
||
replaceChildInPlace(resultMatrix, newResult);
|
||
resultMatrix = newResult;
|
||
multiplicationChildIndex--;
|
||
}
|
||
/* Distribute the remaining multiplication children on the matrix children,
|
||
* if there are no oether matrices (such as a non reduced confidence
|
||
* interval). */
|
||
|
||
if (multiplicationChildIndex >= 0) {
|
||
if (childAtIndex(multiplicationChildIndex).deepIsMatrix(context)) {
|
||
return *this;
|
||
}
|
||
removeChildInPlace(resultMatrix, resultMatrix.numberOfChildren());
|
||
for (int i = 0; i < n*m; i++) {
|
||
Multiplication m = clone().convert<Multiplication>();
|
||
Expression entryI = resultMatrix.childAtIndex(i);
|
||
resultMatrix.replaceChildInPlace(entryI, m);
|
||
m.addChildAtIndexInPlace(entryI, m.numberOfChildren(), m.numberOfChildren());
|
||
m.shallowReduce(reductionContext);
|
||
}
|
||
}
|
||
replaceWithInPlace(resultMatrix);
|
||
return resultMatrix.shallowReduce(context);
|
||
}
|
||
|
||
/* Step 4: Gather like terms. For example, turn pi^2*pi^3 into pi^5. Thanks to
|
||
* the simplification order, such terms are guaranteed to be next to each
|
||
* other. */
|
||
int i = 0;
|
||
while (i < numberOfChildren()-1) {
|
||
Expression oi = childAtIndex(i);
|
||
Expression oi1 = childAtIndex(i+1);
|
||
if (oi.recursivelyMatches(Expression::IsRandom, context)) {
|
||
// Do not factorize random or randint
|
||
} else if (TermsHaveIdenticalBase(oi, oi1)) {
|
||
bool shouldFactorizeBase = true;
|
||
if (TermHasNumeralBase(oi)) {
|
||
/* Combining powers of a given rational isn't straightforward. Indeed,
|
||
* there are two cases we want to deal with:
|
||
* - 2*2^(1/2) or 2*2^pi, we want to keep as-is
|
||
* - 2^(1/2)*2^(3/2) we want to combine. */
|
||
shouldFactorizeBase = oi.type() == ExpressionNode::Type::Power && oi1.type() == ExpressionNode::Type::Power;
|
||
}
|
||
if (shouldFactorizeBase) {
|
||
factorizeBase(i, i+1, reductionContext);
|
||
continue;
|
||
}
|
||
} else if (TermHasNumeralBase(oi) && TermHasNumeralBase(oi1) && TermsHaveIdenticalExponent(oi, oi1)) {
|
||
factorizeExponent(i, i+1, reductionContext);
|
||
continue;
|
||
}
|
||
i++;
|
||
}
|
||
|
||
/* Step 5: We look for terms of form sin(x)^p*cos(x)^q with p, q rational of
|
||
* opposite signs. We replace them by either:
|
||
* - tan(x)^p*cos(x)^(p+q) if |p|<|q|
|
||
* - tan(x)^(-q)*sin(x)^(p+q) otherwise */
|
||
if (reductionContext.target() == ExpressionNode::ReductionTarget::User) {
|
||
for (int i = 0; i < numberOfChildren(); i++) {
|
||
Expression o1 = childAtIndex(i);
|
||
if (Base(o1).type() == ExpressionNode::Type::Sine && TermHasNumeralExponent(o1)) {
|
||
const Expression x = Base(o1).childAtIndex(0);
|
||
/* Thanks to the SimplificationOrder, Cosine-base factors are after
|
||
* Sine-base factors */
|
||
for (int j = i+1; j < numberOfChildren(); j++) {
|
||
Expression o2 = childAtIndex(j);
|
||
if (Base(o2).type() == ExpressionNode::Type::Cosine && TermHasNumeralExponent(o2) && Base(o2).childAtIndex(0).isIdenticalTo(x)) {
|
||
factorizeSineAndCosine(i, j, reductionContext);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
/* Replacing sin/cos by tan factors may have mixed factors and factors are
|
||
* guaranteed to be sorted (according ot SimplificationOrder) at the end of
|
||
* shallowReduce */
|
||
sortChildrenInPlace([](const ExpressionNode * e1, const ExpressionNode * e2, bool canBeInterrupted) { return ExpressionNode::SimplificationOrder(e1, e2, true, canBeInterrupted); }, context, true);
|
||
}
|
||
|
||
/* Step 6: We remove rational children that appeared in the middle of sorted
|
||
* children. It's important to do this after having factorized because
|
||
* factorization can lead to new ones. Indeed:
|
||
* pi^(-1)*pi-> 1
|
||
* i*i -> -1
|
||
* 2^(1/2)*2^(1/2) -> 2
|
||
* sin(x)*cos(x) -> 1*tan(x)
|
||
*/
|
||
i = 1;
|
||
while (i < numberOfChildren()) {
|
||
Expression o = childAtIndex(i);
|
||
if (o.type() == ExpressionNode::Type::Rational && static_cast<Rational &>(o).isOne()) {
|
||
removeChildAtIndexInPlace(i);
|
||
continue;
|
||
}
|
||
if (o.isNumber()) {
|
||
if (childAtIndex(0).isNumber()) {
|
||
Expression o0 = childAtIndex(0);
|
||
Number m = Number::Multiplication(static_cast<Number &>(o0), static_cast<Number &>(o));
|
||
if ((IsInfinity(m, context) || m.isUndefined())
|
||
&& !IsInfinity(o0, context) && !o0.isUndefined()
|
||
&& !IsInfinity(o, context) && !o.isUndefined())
|
||
{
|
||
// Stop the reduction due to a multiplication overflow
|
||
SetInterruption(true);
|
||
return *this;
|
||
}
|
||
if (m.isUndefined()) {
|
||
return replaceWithUndefinedInPlace();
|
||
}
|
||
replaceChildAtIndexInPlace(0, m);
|
||
removeChildAtIndexInPlace(i);
|
||
} else {
|
||
// Number child has to be first
|
||
removeChildAtIndexInPlace(i);
|
||
addChildAtIndexInPlace(o, 0, numberOfChildren());
|
||
}
|
||
continue;
|
||
}
|
||
i++;
|
||
}
|
||
|
||
/* Step 7: If the first child is zero, the multiplication result is zero. We
|
||
* do this after merging the rational children, because the merge takes care
|
||
* of turning 0*inf into undef. We still have to check that no other child
|
||
* involves an inifity expression to avoid reducing 0*e^(inf) to 0.
|
||
* If the first child is 1, we remove it if there are other children. */
|
||
{
|
||
const Expression c = childAtIndex(0);
|
||
if (hasUnit()) {
|
||
// Do not expand Multiplication in presence of units
|
||
shouldExpand = false;
|
||
} else if (c.type() != ExpressionNode::Type::Rational) {
|
||
} else if (static_cast<const Rational &>(c).isZero()) {
|
||
// Check that other children don't match inf or matrix
|
||
if (!recursivelyMatches([](const Expression e, Context * context) { return IsInfinity(e, context) || IsMatrix(e, context); }, context)) {
|
||
replaceWithInPlace(c);
|
||
return c;
|
||
}
|
||
} else if (static_cast<const Rational &>(c).isOne() && numberOfChildren() > 1) {
|
||
removeChildAtIndexInPlace(0);
|
||
}
|
||
}
|
||
|
||
/* Step 8: Expand multiplication over addition children if any. For example,
|
||
* turn (a+b)*c into a*c + b*c. We do not want to do this step right now if
|
||
* the parent is a multiplication or if the reduction is done bottom up to
|
||
* avoid missing factorization such as (x+y)^(-1)*((a+b)*(x+y)).
|
||
* Note: This step must be done after Step 4, otherwise we wouldn't be able to
|
||
* reduce expressions such as (x+y)^(-1)*(x+y)(a+b).
|
||
* If there is a random somewhere, do not expand. */
|
||
Expression p = parent();
|
||
bool hasRandom = recursivelyMatches(Expression::IsRandom, context);
|
||
if (shouldExpand
|
||
&& (p.isUninitialized() || p.type() != ExpressionNode::Type::Multiplication)
|
||
&& !hasRandom)
|
||
{
|
||
for (int i = 0; i < numberOfChildren(); i++) {
|
||
if (childAtIndex(i).type() == ExpressionNode::Type::Addition) {
|
||
return distributeOnOperandAtIndex(i, reductionContext);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Step 9: Let's remove the multiplication altogether if it has one child
|
||
Expression result = squashUnaryHierarchyInPlace();
|
||
if (result != *this) {
|
||
return result;
|
||
}
|
||
|
||
/* Step 10: Let's bubble up the complex operator if possible
|
||
* 3 cases:
|
||
* - All children are real, we do nothing (allChildrenAreReal == 1)
|
||
* - One of the child is non-real and not a ComplexCartesian: it means a
|
||
* complex expression could not be resolved as a ComplexCartesian, we cannot
|
||
* do anything about it now (allChildrenAreReal == -1)
|
||
* - All children are either real or ComplexCartesian (allChildrenAreReal == 0)
|
||
* We can bubble up ComplexCartesian nodes.
|
||
* Do not simplify if there are randoms !*/
|
||
if (!hasRandom && allChildrenAreReal(context) == 0) {
|
||
int nbChildren = numberOfChildren();
|
||
int i = nbChildren-1;
|
||
// Children are sorted so ComplexCartesian nodes are at the end
|
||
assert(childAtIndex(i).type() == ExpressionNode::Type::ComplexCartesian);
|
||
// First, we merge all ComplexCartesian children into one
|
||
ComplexCartesian child = childAtIndex(i).convert<ComplexCartesian>();
|
||
while (true) {
|
||
removeChildAtIndexInPlace(i);
|
||
i--;
|
||
if (i < 0) {
|
||
break;
|
||
}
|
||
Expression e = childAtIndex(i);
|
||
if (e.type() != ExpressionNode::Type::ComplexCartesian) {
|
||
// the Multiplication is sorted so ComplexCartesian nodes are the last ones
|
||
break;
|
||
}
|
||
child = child.multiply(static_cast<ComplexCartesian &>(e), reductionContext);
|
||
}
|
||
// The real children are both factors of the real and the imaginary multiplication
|
||
Multiplication real = *this;
|
||
Multiplication imag = clone().convert<Multiplication>();
|
||
real.addChildAtIndexInPlace(child.real(), real.numberOfChildren(), real.numberOfChildren());
|
||
imag.addChildAtIndexInPlace(child.imag(), real.numberOfChildren(), real.numberOfChildren());
|
||
ComplexCartesian newComplexCartesian = ComplexCartesian::Builder();
|
||
replaceWithInPlace(newComplexCartesian);
|
||
newComplexCartesian.replaceChildAtIndexInPlace(0, real);
|
||
newComplexCartesian.replaceChildAtIndexInPlace(1, imag);
|
||
real.shallowReduce(reductionContext);
|
||
imag.shallowReduce(reductionContext);
|
||
return newComplexCartesian.shallowReduce();
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
void Multiplication::factorizeBase(int i, int j, ExpressionNode::ReductionContext reductionContext) {
|
||
/* This function factorizes two children which have a common base. For example
|
||
* if this is Multiplication::Builder(pi^2, pi^3), then pi^2 and pi^3 could be merged
|
||
* and this turned into Multiplication::Builder(pi^5). */
|
||
|
||
Expression e = childAtIndex(j);
|
||
// Step 1: Get rid of the child j
|
||
removeChildAtIndexInPlace(j);
|
||
// Step 2: Merge child j in child i by factorizing base
|
||
mergeInChildByFactorizingBase(i, e, reductionContext);
|
||
}
|
||
|
||
void Multiplication::mergeInChildByFactorizingBase(int i, Expression e, ExpressionNode::ReductionContext reductionContext) {
|
||
/* This function replace the child at index i by its factorization with e. e
|
||
* and childAtIndex(i) are supposed to have a common base. */
|
||
|
||
// Step 1: Find the new exponent
|
||
Expression s = Addition::Builder(CreateExponent(childAtIndex(i)), CreateExponent(e)); // pi^2*pi^3 -> pi^(2+3) -> pi^5
|
||
// Step 2: Create the new Power
|
||
Expression p = Power::Builder(Base(childAtIndex(i)), s); // pi^2*pi^-2 -> pi^0 -> 1
|
||
s.shallowReduce(reductionContext);
|
||
// Step 3: Replace one of the child
|
||
replaceChildAtIndexInPlace(i, p);
|
||
p = p.shallowReduce(reductionContext);
|
||
/* Step 4: Reducing the new power might have turned it into a multiplication,
|
||
* ie: 12^(1/2) -> 2*3^(1/2). In that case, we need to merge the multiplication
|
||
* node with this. */
|
||
if (p.type() == ExpressionNode::Type::Multiplication) {
|
||
mergeChildrenAtIndexInPlace(p, i);
|
||
}
|
||
}
|
||
|
||
void Multiplication::factorizeExponent(int i, int j, ExpressionNode::ReductionContext reductionContext) {
|
||
/* This function factorizes children which share a common exponent. For
|
||
* example, it turns Multiplication::Builder(2^x,3^x) into Multiplication::Builder(6^x). */
|
||
|
||
// Step 1: Find the new base
|
||
Expression m = Multiplication::Builder(Base(childAtIndex(i)), Base(childAtIndex(j))); // 2^x*3^x -> (2*3)^x -> 6^x
|
||
// Step 2: Get rid of one of the children
|
||
removeChildAtIndexInPlace(j);
|
||
// Step 3: Replace the other child
|
||
childAtIndex(i).replaceChildAtIndexInPlace(0, m);
|
||
// Step 4: Reduce expressions
|
||
m.shallowReduce(reductionContext);
|
||
Expression p = childAtIndex(i).shallowReduce(reductionContext); // 2^x*(1/2)^x -> (2*1/2)^x -> 1
|
||
/* Step 5: Reducing the new power might have turned it into a multiplication,
|
||
* ie: 12^(1/2) -> 2*3^(1/2). In that case, we need to merge the multiplication
|
||
* node with this. */
|
||
if (p.type() == ExpressionNode::Type::Multiplication) {
|
||
mergeChildrenAtIndexInPlace(p, i);
|
||
}
|
||
}
|
||
|
||
Expression Multiplication::distributeOnOperandAtIndex(int i, ExpressionNode::ReductionContext reductionContext) {
|
||
/* This method creates a*...*b*y... + a*...*c*y... + ... from
|
||
* a*...*(b+c+...)*y... */
|
||
assert(i >= 0 && i < numberOfChildren());
|
||
assert(childAtIndex(i).type() == ExpressionNode::Type::Addition);
|
||
|
||
Addition a = Addition::Builder();
|
||
Expression childI = childAtIndex(i);
|
||
int numberOfAdditionTerms = childI.numberOfChildren();
|
||
for (int j = 0; j < numberOfAdditionTerms; j++) {
|
||
Multiplication m = clone().convert<Multiplication>();
|
||
m.replaceChildAtIndexInPlace(i, childI.childAtIndex(j));
|
||
// Reduce m: pi^(-1)*(pi + x) -> pi^(-1)*pi + pi^(-1)*x -> 1 + pi^(-1)*x
|
||
a.addChildAtIndexInPlace(m, a.numberOfChildren(), a.numberOfChildren());
|
||
m.shallowReduce(reductionContext);
|
||
}
|
||
replaceWithInPlace(a);
|
||
return a.shallowReduce(reductionContext); // Order terms, put under a common denominator if needed
|
||
}
|
||
|
||
void Multiplication::addMissingFactors(Expression factor, ExpressionNode::ReductionContext reductionContext) {
|
||
if (factor.type() == ExpressionNode::Type::Multiplication) {
|
||
for (int j = 0; j < factor.numberOfChildren(); j++) {
|
||
addMissingFactors(factor.childAtIndex(j), reductionContext);
|
||
}
|
||
return;
|
||
}
|
||
/* Special case when factor is a Rational: if 'this' has already a rational
|
||
* child, we replace it by its LCM with factor ; otherwise, we simply add
|
||
* factor as a child. */
|
||
if (numberOfChildren() > 0 && childAtIndex(0).type() == ExpressionNode::Type::Rational && factor.type() == ExpressionNode::Type::Rational) {
|
||
assert(static_cast<Rational &>(factor).isInteger());
|
||
assert(childAtIndex(0).convert<Rational>().isInteger());
|
||
Integer lcm = Arithmetic::LCM(static_cast<Rational &>(factor).unsignedIntegerNumerator(), childAtIndex(0).convert<Rational>().unsignedIntegerNumerator());
|
||
if (lcm.isOverflow()) {
|
||
addChildAtIndexInPlace(Rational::Builder(static_cast<Rational &>(factor).unsignedIntegerNumerator()), 1, numberOfChildren());
|
||
return;
|
||
}
|
||
replaceChildAtIndexInPlace(0, Rational::Builder(lcm));
|
||
return;
|
||
}
|
||
if (factor.type() != ExpressionNode::Type::Rational) {
|
||
/* If factor is not a rational, we merge it with the child of identical
|
||
* base if any. Otherwise, we add it as an new child. */
|
||
for (int i = 0; i < numberOfChildren(); i++) {
|
||
if (TermsHaveIdenticalBase(childAtIndex(i), factor)) {
|
||
Expression sub = Subtraction::Builder(CreateExponent(childAtIndex(i)), CreateExponent(factor)).deepReduce(reductionContext);
|
||
if (sub.sign(reductionContext.context()) == ExpressionNode::Sign::Negative) { // index[0] < index[1]
|
||
sub = Opposite::Builder(sub);
|
||
if (factor.type() == ExpressionNode::Type::Power) {
|
||
factor.replaceChildAtIndexInPlace(1, sub);
|
||
} else {
|
||
factor = Power::Builder(factor, sub);
|
||
}
|
||
sub.shallowReduce(reductionContext);
|
||
mergeInChildByFactorizingBase(i, factor, reductionContext);
|
||
} else if (sub.sign(reductionContext.context()) == ExpressionNode::Sign::Unknown) {
|
||
mergeInChildByFactorizingBase(i, factor, reductionContext);
|
||
}
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
addChildAtIndexInPlace(factor.clone(), 0, numberOfChildren());
|
||
sortChildrenInPlace([](const ExpressionNode * e1, const ExpressionNode * e2, bool canBeInterrupted) { return ExpressionNode::SimplificationOrder(e1, e2, true, canBeInterrupted); }, reductionContext.context(), true);
|
||
}
|
||
|
||
void Multiplication::factorizeSineAndCosine(int i, int j, ExpressionNode::ReductionContext reductionContext) {
|
||
/* This function turn sin(x)^p * cos(x)^q into either:
|
||
* - tan(x)^p*cos(x)^(p+q) if |p|<|q|
|
||
* - tan(x)^(-q)*sin(x)^(p+q) otherwise */
|
||
const Expression x = Base(childAtIndex(i)).childAtIndex(0);
|
||
// We check before that p and q were numbers
|
||
Number p = CreateExponent(childAtIndex(i)).convert<Number>();
|
||
Number q = CreateExponent(childAtIndex(j)).convert<Number>();
|
||
// If p and q have the same sign, we cannot replace them by a tangent
|
||
if ((int)p.sign()*(int)q.sign() > 0) {
|
||
return;
|
||
}
|
||
Number sumPQ = Number::Addition(p, q);
|
||
Number absP = p.clone().convert<Number>().setSign(ExpressionNode::Sign::Positive);
|
||
Number absQ = q.clone().convert<Number>().setSign(ExpressionNode::Sign::Positive);
|
||
Expression tan = Tangent::Builder(x.clone());
|
||
if (Number::NaturalOrder(absP, absQ) < 0) {
|
||
// Replace sin(x) by tan(x) or sin(x)^p by tan(x)^p
|
||
if (p.isRationalOne()) {
|
||
replaceChildAtIndexInPlace(i, tan);
|
||
} else {
|
||
replaceChildAtIndexInPlace(i, Power::Builder(tan, p));
|
||
}
|
||
childAtIndex(i).shallowReduce(reductionContext);
|
||
// Replace cos(x)^q by cos(x)^(p+q)
|
||
replaceChildAtIndexInPlace(j, Power::Builder(Base(childAtIndex(j)), sumPQ));
|
||
childAtIndex(j).shallowReduce(reductionContext);
|
||
} else {
|
||
// Replace cos(x)^q by tan(x)^(-q)
|
||
Expression newPower = Power::Builder(tan, Number::Multiplication(q, Rational::Builder(-1)));
|
||
newPower.childAtIndex(1).shallowReduce(reductionContext);
|
||
replaceChildAtIndexInPlace(j, newPower);
|
||
newPower.shallowReduce(reductionContext);
|
||
// Replace sin(x)^p by sin(x)^(p+q)
|
||
replaceChildAtIndexInPlace(i, Power::Builder(Base(childAtIndex(i)), sumPQ));
|
||
childAtIndex(i).shallowReduce(reductionContext);
|
||
}
|
||
}
|
||
|
||
bool Multiplication::HaveSameNonNumeralFactors(const Expression & e1, const Expression & e2) {
|
||
assert(e1.numberOfChildren() > 0);
|
||
assert(e2.numberOfChildren() > 0);
|
||
int numberOfNonNumeralFactors1 = e1.childAtIndex(0).isNumber() ? e1.numberOfChildren()-1 : e1.numberOfChildren();
|
||
int numberOfNonNumeralFactors2 = e2.childAtIndex(0).isNumber() ? e2.numberOfChildren()-1 : e2.numberOfChildren();
|
||
if (numberOfNonNumeralFactors1 != numberOfNonNumeralFactors2) {
|
||
return false;
|
||
}
|
||
int firstNonNumeralOperand1 = e1.childAtIndex(0).isNumber() ? 1 : 0;
|
||
int firstNonNumeralOperand2 = e2.childAtIndex(0).isNumber() ? 1 : 0;
|
||
for (int i = 0; i < numberOfNonNumeralFactors1; i++) {
|
||
Expression currentChild1 = e1.childAtIndex(firstNonNumeralOperand1+i);
|
||
if (currentChild1.isRandom()
|
||
|| !(currentChild1.isIdenticalTo(e2.childAtIndex(firstNonNumeralOperand2+i))))
|
||
{
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
const Expression Multiplication::CreateExponent(Expression e) {
|
||
Expression result = e.type() == ExpressionNode::Type::Power ? e.childAtIndex(1).clone() : Rational::Builder(1);
|
||
return result;
|
||
}
|
||
|
||
bool Multiplication::TermsHaveIdenticalBase(const Expression & e1, const Expression & e2) {
|
||
return Base(e1).isIdenticalTo(Base(e2));
|
||
}
|
||
|
||
bool Multiplication::TermsHaveIdenticalExponent(const Expression & e1, const Expression & e2) {
|
||
/* Note: We will return false for e1=2 and e2=Pi, even though one could argue
|
||
* that these have the same exponent whose value is 1. */
|
||
return e1.type() == ExpressionNode::Type::Power && e2.type() == ExpressionNode::Type::Power && (e1.childAtIndex(1).isIdenticalTo(e2.childAtIndex(1)));
|
||
}
|
||
|
||
bool Multiplication::TermHasNumeralBase(const Expression & e) {
|
||
return Base(e).isNumber();
|
||
}
|
||
|
||
bool Multiplication::TermHasNumeralExponent(const Expression & e) {
|
||
if (e.type() != ExpressionNode::Type::Power) {
|
||
return true;
|
||
}
|
||
if (e.childAtIndex(1).isNumber()) {
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
void Multiplication::splitIntoNormalForm(Expression & numerator, Expression & denominator, ExpressionNode::ReductionContext reductionContext) const {
|
||
Multiplication mNumerator = Multiplication::Builder();
|
||
Multiplication mDenominator = Multiplication::Builder();
|
||
int numberOfFactorsInNumerator = 0;
|
||
int numberOfFactorsInDenominator = 0;
|
||
const int numberOfFactors = numberOfChildren();
|
||
for (int i = 0; i < numberOfFactors; i++) {
|
||
Expression factor = childAtIndex(i).clone();
|
||
ExpressionNode::Type factorType = factor.type();
|
||
Expression factorsNumerator;
|
||
Expression factorsDenominator;
|
||
if (factorType == ExpressionNode::Type::Rational) {
|
||
Rational r = static_cast<Rational &>(factor);
|
||
if (r.isRationalOne()) {
|
||
// Special case: add a unary numeral factor if r = 1
|
||
factorsNumerator = r;
|
||
} else {
|
||
Integer rNum = r.signedIntegerNumerator();
|
||
if (!rNum.isOne()) {
|
||
factorsNumerator = Rational::Builder(rNum);
|
||
}
|
||
Integer rDen = r.integerDenominator();
|
||
if (!rDen.isOne()) {
|
||
factorsDenominator = Rational::Builder(rDen);
|
||
}
|
||
}
|
||
} else if (factorType == ExpressionNode::Type::Power) {
|
||
Expression fd = factor.denominator(reductionContext);
|
||
if (fd.isUninitialized()) {
|
||
factorsNumerator = factor;
|
||
} else {
|
||
factorsDenominator = fd;
|
||
}
|
||
} else {
|
||
factorsNumerator = factor;
|
||
}
|
||
if (!factorsNumerator.isUninitialized()) {
|
||
mNumerator.addChildAtIndexInPlace(factorsNumerator, numberOfFactorsInNumerator, numberOfFactorsInNumerator);
|
||
numberOfFactorsInNumerator++;
|
||
}
|
||
if (!factorsDenominator.isUninitialized()) {
|
||
mDenominator.addChildAtIndexInPlace(factorsDenominator, numberOfFactorsInDenominator, numberOfFactorsInDenominator);
|
||
numberOfFactorsInDenominator++;
|
||
}
|
||
}
|
||
if (numberOfFactorsInNumerator) {
|
||
numerator = mNumerator.squashUnaryHierarchyInPlace();
|
||
}
|
||
if (numberOfFactorsInDenominator) {
|
||
denominator = mDenominator.squashUnaryHierarchyInPlace();
|
||
}
|
||
}
|
||
|
||
const Expression Multiplication::Base(const Expression e) {
|
||
if (e.type() == ExpressionNode::Type::Power) {
|
||
return e.childAtIndex(0);
|
||
}
|
||
return e;
|
||
}
|
||
|
||
template MatrixComplex<float> MultiplicationNode::computeOnComplexAndMatrix<float>(std::complex<float> const, const MatrixComplex<float>, Preferences::ComplexFormat);
|
||
template MatrixComplex<double> MultiplicationNode::computeOnComplexAndMatrix<double>(std::complex<double> const, const MatrixComplex<double>, Preferences::ComplexFormat);
|
||
template Complex<float> MultiplicationNode::compute<float>(const std::complex<float>, const std::complex<float>, Preferences::ComplexFormat);
|
||
template Complex<double> MultiplicationNode::compute<double>(const std::complex<double>, const std::complex<double>, Preferences::ComplexFormat);
|
||
template void Multiplication::computeOnArrays<double>(double * m, double * n, double * result, int mNumberOfColumns, int mNumberOfRows, int nNumberOfColumns);
|
||
|
||
}
|