Files
Upsilon/apps/regression/model/trigonometric_model.cpp
2020-05-13 15:25:33 +02:00

110 lines
3.6 KiB
C++

#include "trigonometric_model.h"
#include <apps/regression/store.h>
#include "../../shared/poincare_helpers.h"
#include <poincare/addition.h>
#include <poincare/layout_helper.h>
#include <poincare/multiplication.h>
#include <poincare/number.h>
#include <poincare/power.h>
#include <poincare/preferences.h>
#include <poincare/sine.h>
#include <poincare/symbol.h>
#include <math.h>
#include <assert.h>
using namespace Poincare;
using namespace Shared;
namespace Regression {
static double toRadians(Poincare::Preferences::AngleUnit angleUnit) {
switch (Poincare::Preferences::sharedPreferences()->angleUnit()) {
case Poincare::Preferences::AngleUnit::Degree:
return M_PI/180.0;
case Poincare::Preferences::AngleUnit::Gradian:
return M_PI/200.0;
default:
return 1;
}
}
Layout TrigonometricModel::layout() {
if (m_layout.isUninitialized()) {
const char * s = "a·sin(b·X+c)+d";
m_layout = LayoutHelper::String(s, strlen(s), k_layoutFont);
}
return m_layout;
}
double TrigonometricModel::evaluate(double * modelCoefficients, double x) const {
double a = modelCoefficients[0];
double b = modelCoefficients[1];
double c = modelCoefficients[2];
double d = modelCoefficients[3];
double radianX = x * toRadians(Poincare::Preferences::sharedPreferences()->angleUnit());
return a*sin(b*radianX+c)+d;
}
double TrigonometricModel::partialDerivate(double * modelCoefficients, int derivateCoefficientIndex, double x) const {
if (derivateCoefficientIndex == 3) {
// Derivate with respect to d: 1
return 1.0;
}
double a = modelCoefficients[0];
double b = modelCoefficients[1];
double c = modelCoefficients[2];
double radianX = x * toRadians(Poincare::Preferences::sharedPreferences()->angleUnit());
if (derivateCoefficientIndex == 0) {
// Derivate with respect to a: sin(b*x+c)
return sin(b * radianX + c);
}
if (derivateCoefficientIndex == 1) {
// Derivate with respect to b: x*a*cos(b*x+c);
return radianX * a * cos(b * radianX + c);
}
assert(derivateCoefficientIndex == 2);
// Derivatewith respect to c: a*cos(b*x+c)
return a * cos(b * radianX + c);
}
void TrigonometricModel::specializedInitCoefficientsForFit(double * modelCoefficients, double defaultValue, Store * store, int series) const {
assert(store != nullptr && series >= 0 && series < Store::k_numberOfSeries && !store->seriesIsEmpty(series));
for (int i = 1; i < k_numberOfCoefficients - 1; i++) {
modelCoefficients[i] = defaultValue;
}
/* We try a better initialization than the default value. We hope that this
* will improve the gradient descent to find correct coefficients.
*
* Init the "amplitude" coefficient. We take twice the standard deviation,
* because for a normal law, this interval contains 99.73% of the values. We
* do not take half of the apmlitude of the series, because this would be too
* dependant on outliers. */
modelCoefficients[0] = 3.0*store->standardDeviationOfColumn(series, 1);
// Init the "y delta" coefficient
modelCoefficients[k_numberOfCoefficients - 1] = store->meanOfColumn(series, 1);
}
Expression TrigonometricModel::expression(double * modelCoefficients) {
double a = modelCoefficients[0];
double b = modelCoefficients[1];
double c = modelCoefficients[2];
double d = modelCoefficients[3];
// a*sin(bx+c)+d
Expression result =
Addition::Builder(
Multiplication::Builder(
Number::DecimalNumber(a),
Sine::Builder(
Addition::Builder(
Multiplication::Builder(
Number::DecimalNumber(b),
Symbol::Builder('x')),
Number::DecimalNumber(c)))),
Number::DecimalNumber(d));
return result;
}
}