Files
Upsilon/apps/regression/model/model.cpp
2019-05-03 15:54:22 +02:00

202 lines
7.8 KiB
C++

#include "model.h"
#include "../store.h"
#include "../../shared/poincare_helpers.h"
#include <poincare/decimal.h>
#include <poincare/matrix.h>
#include <poincare/multiplication.h>
#include <math.h>
using namespace Poincare;
using namespace Shared;
namespace Regression {
void Model::tidy() {
m_layout = Layout();
}
double Model::levelSet(double * modelCoefficients, double xMin, double step, double xMax, double y, Poincare::Context * context) {
Expression yExpression = Number::DecimalNumber(y);
PoincareHelpers::Simplify(&yExpression, *context);
Expression modelExpression = simplifiedExpression(modelCoefficients, context);
double result = PoincareHelpers::NextIntersection(modelExpression, "x", xMin, step, xMax, *context, yExpression).abscissa;
return result;
}
void Model::fit(Store * store, int series, double * modelCoefficients, Poincare::Context * context) {
if (dataSuitableForFit(store, series)) {
for (int i = 0; i < numberOfCoefficients(); i++) {
modelCoefficients[i] = k_initialCoefficientValue;
}
fitLevenbergMarquardt(store, series, modelCoefficients, context);
} else {
for (int i = 0; i < numberOfCoefficients(); i++) {
modelCoefficients[i] = NAN;
}
}
}
bool Model::dataSuitableForFit(Store * store, int series) const {
if (!store->seriesNumberOfAbscissaeGreaterOrEqualTo(series, numberOfCoefficients())) {
return false;
}
return !store->seriesIsEmpty(series);
}
void Model::fitLevenbergMarquardt(Store * store, int series, double * modelCoefficients, Context * context) {
/* We want to find the best coefficients of the regression to minimize the sum
* of the squares of the difference between a data point and the corresponding
* point of the fitting regression (chi2 function).
* We use the Levenberg-Marquardt algorithm to minimize this chi2 merit
* function.
* The equation to solve is A'*da = B, with A' a damped version of the chi2
* Hessian matrix, da the coefficients increments and B colinear to the
* gradient of chi2.*/
double currentChi2 = chi2(store, series, modelCoefficients);
double lambda = k_initialLambda;
int n = numberOfCoefficients(); // n unknown coefficients
int smallChi2ChangeCounts = 0;
int iterationCount = 0;
while (smallChi2ChangeCounts < k_consecutiveSmallChi2ChangesLimit && iterationCount < k_maxIterations) {
// Create the alpha prime matrix (it is symmetric)
double coefficientsAPrime[Model::k_maxNumberOfCoefficients * Model::k_maxNumberOfCoefficients];
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
double alphaPrime = alphaPrimeCoefficient(store, series, modelCoefficients, i, j, lambda);
coefficientsAPrime[i*n+j] = alphaPrime;
if (i != j) {
coefficientsAPrime[j*n+i] = alphaPrime;
}
}
}
// Create the beta matrix
double operandsB[Model::k_maxNumberOfCoefficients];
for (int j = 0; j < n; j++) {
operandsB[j] = betaCoefficient(store, series, modelCoefficients, j);
}
// Compute the equation solution (= vector of coefficients increments)
double modelCoefficientSteps[Model::k_maxNumberOfCoefficients];
if (solveLinearSystem(modelCoefficientSteps, coefficientsAPrime, operandsB, n, context) < 0) {
break;
}
// Compute the new coefficients
double newModelCoefficients[Model::k_maxNumberOfCoefficients];
for (int i = 0; i < n; i++) {
newModelCoefficients[i] = modelCoefficients[i] + modelCoefficientSteps[i];
}
// Compare new chi2 with the previous value
double newChi2 = chi2(store, series, newModelCoefficients);
smallChi2ChangeCounts = (fabs(currentChi2 - newChi2) > k_chi2ChangeCondition) ? 0 : smallChi2ChangeCounts + 1;
if (newChi2 >= currentChi2) {
lambda*= k_lambdaFactor;
} else {
lambda/= k_lambdaFactor;
for (int i = 0; i < n; i++) {
modelCoefficients[i] = newModelCoefficients[i];
}
currentChi2 = newChi2;
}
iterationCount++;
}
}
double Model::chi2(Store * store, int series, double * modelCoefficients) const {
double result = 0.0;
for (int i = 0; i < store->numberOfPairsOfSeries(series); i++) {
double xi = store->get(series, 0, i);
double yi = store->get(series, 1, i);
double difference = yi - evaluate(modelCoefficients, xi);
result += difference * difference;
}
return result;
}
// a'(k,k) = a(k,k) * (1 + lambda)
// a'(k,l) = a(l,k) when (k != l)
double Model::alphaPrimeCoefficient(Store * store, int series, double * modelCoefficients, int k, int l, double lambda) const {
assert(k >= 0 && k < numberOfCoefficients());
assert(l >= 0 && l < numberOfCoefficients());
double result = 0.0;
if (k == l) {
/* The Levengerg method uses a'(k,k) = a(k,k) + lambda.
* The Marquardt method uses a'(k,k) = a(k,k) * (1 + lambda).
* We use a mixed method to try to make the matrix invertible:
* a'(k,k) = a(k,k) * (1 + lambda), but if a'(k,k) is too small,
* a'(k,k) = 2*epsilon so that the inversion method does not detect a'(k,k)
* as a zero. */
result = alphaCoefficient(store, series, modelCoefficients, k, l)*(1.0+lambda);
if (std::fabs(result) < Expression::Epsilon<double>()) {
result = 2*Expression::Epsilon<double>();
}
} else {
result = alphaCoefficient(store, series, modelCoefficients, l, k);
}
return result;
}
// a(k,l) = sum(0, N-1, derivate(y(xi|a), ak) * derivate(y(xi|a), a))
double Model::alphaCoefficient(Store * store, int series, double * modelCoefficients, int k, int l) const {
assert(k >= 0 && k < numberOfCoefficients());
assert(l >= 0 && l < numberOfCoefficients());
double result = 0.0;
int m = store->numberOfPairsOfSeries(series);
for (int i = 0; i < m; i++) {
double xi = store->get(series, 0, i);
result += partialDerivate(modelCoefficients, k, xi) * partialDerivate(modelCoefficients, l, xi);
}
return result;
}
// b(k) = sum(0, N-1, (yi - y(xi|a)) * derivate(y(xi|a), ak))
double Model::betaCoefficient(Store * store, int series, double * modelCoefficients, int k) const {
assert(k >= 0 && k < numberOfCoefficients());
double result = 0.0;
int m = store->numberOfPairsOfSeries(series); // m equations
for (int i = 0; i < m; i++) {
double xi = store->get(series, 0, i);
double yi = store->get(series, 1, i);
result += (yi - evaluate(modelCoefficients, xi)) * partialDerivate(modelCoefficients, k, xi);
}
return result;
}
int Model::solveLinearSystem(double * solutions, double * coefficients, double * constants, int solutionDimension, Context * context) {
int n = solutionDimension;
assert(n <= k_maxNumberOfCoefficients);
double coefficientsSave[k_maxNumberOfCoefficients * k_maxNumberOfCoefficients];
for (int i = 0; i < n * n; i++) {
coefficientsSave[i] = coefficients[i];
}
assert(k_maxNumberOfCoefficients < Matrix::k_maxNumberOfCoefficients);
int inverseResult = Matrix::ArrayInverse(coefficients, n, n);
int numberOfMatrixModifications = 0;
while (inverseResult < 0 && numberOfMatrixModifications < k_maxMatrixInversionFixIterations) {
/* If the matrix is not invertible, we modify it to try to make
* it invertible by multiplying the diagonal coefficients by 1+i/n. This
* will change the iterative path of the algorithm towards the chi2 minimum,
* but not the final solution itself, as the stopping condition is that chi2
* is at its minimum, so when B is null. */
for (int i = 0; i < n; i ++) {
coefficientsSave[i*n+i] = (1 + ((double)i)/((double)n)) * coefficientsSave[i*n+i];
}
inverseResult = Matrix::ArrayInverse(coefficientsSave, n, n);
numberOfMatrixModifications++;
}
if (inverseResult < 0) {
return - 1;
}
if (numberOfMatrixModifications > 0) {
for (int i = 0; i < n*n; i++) {
coefficients[i] = coefficientsSave[i];
}
}
Multiplication::computeOnArrays<double>(coefficients, constants, solutions, n, n, 1);
return 0;
}
}