mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 00:37:25 +01:00
201 lines
7.4 KiB
C++
201 lines
7.4 KiB
C++
#include <apps/shared/global_context.h>
|
|
#include "helper.h"
|
|
|
|
using namespace Poincare;
|
|
|
|
enum class PointOfInterestType {
|
|
Maximum,
|
|
Minimum,
|
|
Root
|
|
};
|
|
|
|
bool doubles_are_approximately_equal(double d1, double d2) {
|
|
bool d2IsNaN = std::isnan(d2);
|
|
if (std::isnan(d1)) {
|
|
return d2IsNaN;
|
|
}
|
|
if (d2IsNaN) {
|
|
return false;
|
|
}
|
|
return std::abs(d1-d2) < 0.00001;
|
|
}
|
|
|
|
void assert_points_of_interest_are(
|
|
PointOfInterestType type,
|
|
int numberOfPointsOfInterest,
|
|
Coordinate2D<double> * pointsOfInterest,
|
|
const char * expression,
|
|
const char * symbol,
|
|
double start,
|
|
double step,
|
|
double max,
|
|
Preferences::ComplexFormat complexFormat = Preferences::ComplexFormat::Real,
|
|
Preferences::AngleUnit angleUnit = Preferences::AngleUnit::Degree)
|
|
{
|
|
Shared::GlobalContext context;
|
|
Poincare::Expression e = parse_expression(expression, &context, false);
|
|
for (int i = 0; i < numberOfPointsOfInterest; i++) {
|
|
quiz_assert_log_if_failure(!std::isnan(start), e);
|
|
Coordinate2D<double> nextPointOfInterest;
|
|
if (type == PointOfInterestType::Maximum) {
|
|
nextPointOfInterest = e.nextMaximum(symbol, start, step, max, &context, complexFormat, angleUnit);
|
|
} else if (type == PointOfInterestType::Minimum) {
|
|
nextPointOfInterest = e.nextMinimum(symbol, start, step, max, &context, complexFormat, angleUnit);
|
|
} else if (type == PointOfInterestType::Root) {
|
|
nextPointOfInterest = Coordinate2D<double>(e.nextRoot(symbol, start, step, max, &context, complexFormat, angleUnit), 0.0);
|
|
}
|
|
quiz_assert_log_if_failure(
|
|
doubles_are_approximately_equal(pointsOfInterest[i].x1(), nextPointOfInterest.x1()) &&
|
|
doubles_are_approximately_equal(pointsOfInterest[i].x2(), nextPointOfInterest.x2()),
|
|
e);
|
|
start = nextPointOfInterest.x1() + step;
|
|
}
|
|
}
|
|
|
|
QUIZ_CASE(poincare_function_extremum) {
|
|
{
|
|
{
|
|
constexpr int numberOfMaxima = 3;
|
|
Coordinate2D<double> maxima[numberOfMaxima] = {
|
|
Coordinate2D<double>(0.0, 1.0),
|
|
Coordinate2D<double>(360.0, 1.0),
|
|
Coordinate2D<double>(NAN, NAN)};
|
|
assert_points_of_interest_are(PointOfInterestType::Maximum, numberOfMaxima, maxima, "cos(a)", "a", -1.0, 0.1, 500.0);
|
|
}
|
|
{
|
|
constexpr int numberOfMinima = 1;
|
|
Coordinate2D<double> minima[numberOfMinima] = {
|
|
Coordinate2D<double>(180.0, -1.0)};
|
|
assert_points_of_interest_are(PointOfInterestType::Minimum, numberOfMinima, minima, "cos(a)", "a", 0.0, 0.1, 300.0);
|
|
}
|
|
}
|
|
{
|
|
{
|
|
constexpr int numberOfMaxima = 1;
|
|
Coordinate2D<double> maxima[numberOfMaxima] = {
|
|
Coordinate2D<double>(NAN, NAN)};
|
|
assert_points_of_interest_are(PointOfInterestType::Maximum, numberOfMaxima, maxima, "a^2", "a", -1.0, 0.1, 100.0);
|
|
}
|
|
{
|
|
constexpr int numberOfMinima = 1;
|
|
Coordinate2D<double> minima[numberOfMinima] = {
|
|
Coordinate2D<double>(0.0, 0.0)};
|
|
assert_points_of_interest_are(PointOfInterestType::Minimum, numberOfMinima, minima, "a^2", "a", -1.0, 0.1, 100.0);
|
|
}
|
|
}
|
|
{
|
|
{
|
|
constexpr int numberOfMaxima = 1;
|
|
Coordinate2D<double> maxima[numberOfMaxima] = {
|
|
Coordinate2D<double>(NAN, 3.0)};
|
|
assert_points_of_interest_are(PointOfInterestType::Maximum, numberOfMaxima, maxima, "3", "a", -1.0, 0.1, 100.0);
|
|
}
|
|
{
|
|
constexpr int numberOfMinima = 1;
|
|
Coordinate2D<double> minima[numberOfMinima] = {
|
|
Coordinate2D<double>(NAN, 3.0)};
|
|
assert_points_of_interest_are(PointOfInterestType::Minimum, numberOfMinima, minima, "3", "a", -1.0, 0.1, 100.0);
|
|
}
|
|
}
|
|
{
|
|
{
|
|
constexpr int numberOfMaxima = 1;
|
|
Coordinate2D<double> maxima[numberOfMaxima] = {
|
|
Coordinate2D<double>(NAN, 0.0)};
|
|
assert_points_of_interest_are(PointOfInterestType::Maximum, numberOfMaxima, maxima, "0", "a", -1.0, 0.1, 100.0);
|
|
}
|
|
{
|
|
constexpr int numberOfMinima = 1;
|
|
Coordinate2D<double> minima[numberOfMinima] = {
|
|
Coordinate2D<double>(NAN, 0.0)};
|
|
assert_points_of_interest_are(PointOfInterestType::Minimum, numberOfMinima, minima, "0", "a", -1.0, 0.1, 100.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
QUIZ_CASE(poincare_function_root) {
|
|
{
|
|
constexpr int numberOfRoots = 3;
|
|
Coordinate2D<double> roots[numberOfRoots] = {
|
|
Coordinate2D<double>(90.0, 0.0),
|
|
Coordinate2D<double>(270.0, 0.0),
|
|
Coordinate2D<double>(450.0, 0.0)};
|
|
assert_points_of_interest_are(PointOfInterestType::Root, numberOfRoots, roots, "cos(a)", "a", 0.0, 0.1, 500.0);
|
|
}
|
|
{
|
|
constexpr int numberOfRoots = 1;
|
|
Coordinate2D<double> roots[numberOfRoots] = {
|
|
Coordinate2D<double>(0.0, 0.0)};
|
|
assert_points_of_interest_are(PointOfInterestType::Root, numberOfRoots, roots, "a^2", "a", -1.0, 0.1, 100.0);
|
|
}
|
|
{
|
|
constexpr int numberOfRoots = 2;
|
|
Coordinate2D<double> roots[numberOfRoots] = {
|
|
Coordinate2D<double>(-2.0, 0.0),
|
|
Coordinate2D<double>(2.0, 0.0)};
|
|
assert_points_of_interest_are(PointOfInterestType::Root, numberOfRoots, roots, "a^2-4", "a", -5.0, 0.1, 100.0);
|
|
}
|
|
{
|
|
constexpr int numberOfRoots = 1;
|
|
Coordinate2D<double> roots[numberOfRoots] = {
|
|
Coordinate2D<double>(NAN, 0.0)};
|
|
assert_points_of_interest_are(PointOfInterestType::Root, numberOfRoots, roots, "3", "a", -1.0, 0.1, 100.0);
|
|
}
|
|
{
|
|
constexpr int numberOfRoots = 1;
|
|
Coordinate2D<double> roots[numberOfRoots] = {
|
|
Coordinate2D<double>(-0.9, 0.0)};
|
|
assert_points_of_interest_are(PointOfInterestType::Root, numberOfRoots, roots, "0", "a", -1.0, 0.1, 100.0);
|
|
}
|
|
}
|
|
|
|
void assert_next_intersections_are(
|
|
const char * otherExpression,
|
|
int numberOfIntersections,
|
|
Coordinate2D<double> * intersections,
|
|
const char * expression,
|
|
const char * symbol,
|
|
double start,
|
|
double step,
|
|
double max,
|
|
Preferences::ComplexFormat complexFormat = Preferences::ComplexFormat::Real,
|
|
Preferences::AngleUnit angleUnit = Preferences::AngleUnit::Degree)
|
|
{
|
|
Shared::GlobalContext context;
|
|
Poincare::Expression e = parse_expression(expression, &context, false);
|
|
Poincare::Expression other = parse_expression(otherExpression, &context, false);
|
|
for (int i = 0; i < numberOfIntersections; i++) {
|
|
quiz_assert_log_if_failure(!std::isnan(start), e);
|
|
Coordinate2D<double> nextIntersection = e.nextIntersection(symbol, start, step, max, &context, complexFormat, angleUnit, other);
|
|
quiz_assert_log_if_failure(
|
|
(doubles_are_approximately_equal(intersections[i].x1(), nextIntersection.x1()))
|
|
&& (doubles_are_approximately_equal(intersections[i].x2(), nextIntersection.x2())),
|
|
e);
|
|
start = nextIntersection.x1() + step;
|
|
}
|
|
}
|
|
|
|
QUIZ_CASE(poincare_function_intersection) {
|
|
{
|
|
constexpr int numberOfIntersections = 1;
|
|
Coordinate2D<double> intersections[numberOfIntersections] = {
|
|
Coordinate2D<double>(NAN, NAN)};
|
|
assert_next_intersections_are("2", numberOfIntersections, intersections, "cos(a)", "a", -1.0, 0.1, 500.0);
|
|
}
|
|
{
|
|
constexpr int numberOfIntersections = 2;
|
|
Coordinate2D<double> intersections[numberOfIntersections] = {
|
|
Coordinate2D<double>(0.0, 1.0),
|
|
Coordinate2D<double>(360.0, 1.0)};
|
|
assert_next_intersections_are("1", numberOfIntersections, intersections, "cos(a)", "a", -1.0, 0.1, 500.0);
|
|
}
|
|
{
|
|
constexpr int numberOfIntersections = 3;
|
|
Coordinate2D<double> intersections[numberOfIntersections] = {
|
|
Coordinate2D<double>(90.0, 0.0),
|
|
Coordinate2D<double>(270.0, 0.0),
|
|
Coordinate2D<double>(450.0, 0.0)};
|
|
assert_next_intersections_are("0", numberOfIntersections, intersections, "cos(a)", "a", -1.0, 0.1, 500.0);
|
|
}
|
|
}
|