Files
Upsilon/apps/regression/store.cpp
Léa Saviot 42cdf95e9f [apps/regression] Improve vertical navigation
Data set:
X1 2 3 2   1
Y1 0 1 0.5 5
X2 1 10 2
Y2 0 25 0.5

There was circular navigation on series 2 mean point
2018-12-13 15:56:33 +01:00

279 lines
9.6 KiB
C++

#include "store.h"
#include "apps/apps_container.h"
#include <poincare/preferences.h>
#include <assert.h>
#include <float.h>
#include <cmath>
#include <string.h>
using namespace Shared;
namespace Regression {
static inline float max(float x, float y) { return (x>y ? x : y); }
static inline float min(float x, float y) { return (x<y ? x : y); }
static_assert(Model::k_numberOfModels == 9, "Number of models changed, Regression::Store() needs to adapt");
static_assert(Store::k_numberOfSeries == 3, "Number of series changed, Regression::Store() needs to adapt (m_seriesChecksum)");
Store::Store() :
InteractiveCurveViewRange(nullptr),
DoublePairStore(),
m_seriesChecksum{0, 0, 0},
m_angleUnit(Poincare::Preferences::AngleUnit::Degree)
{
for (int i = 0; i < k_numberOfSeries; i++) {
m_regressionTypes[i] = Model::Type::Linear;
m_regressionChanged[i] = false;
}
}
void Store::tidy() {
for (int i = 0; i < Model::k_numberOfModels; i++) {
regressionModel(i)->tidy();
}
}
/* Regressions */
void Store::setSeriesRegressionType(int series, Model::Type type) {
assert(series >= 0 && series < k_numberOfSeries);
if (m_regressionTypes[series] != type) {
m_regressionTypes[series] = type;
m_regressionChanged[series] = true;
}
}
/* Dots */
int Store::closestVerticalDot(int direction, double x, double y, int currentSeries, int currentDot, int * nextSeries, Poincare::Context * globalContext) {
double nextX = INFINITY;
double nextY = INFINITY;
int selectedDot = -1;
for (int series = 0; series < k_numberOfSeries; series++) {
if (seriesIsEmpty(series) || (currentDot >= 0 && currentSeries == series)) {
/* If the currentDot is valid, the next series should not be the current
* series */
continue;
}
int numberOfPoints = numberOfPairsOfSeries(series);
for (int i = 0; i <= numberOfPoints; i++) {
double currentX = i < numberOfPoints ? m_data[series][0][i] : meanOfColumn(series, 0);
double currentY = i < numberOfPoints ? m_data[series][1][i] : meanOfColumn(series, 1);
if (m_xMin <= currentX && currentX <= m_xMax // The next dot is within the window abscissa bounds
&& (std::fabs(currentX - x) <= std::fabs(nextX - x)) // The next dot is the closest to x in abscissa
&& ((currentY > y && direction > 0) // The next dot is above/under y
|| (currentY < y && direction < 0)
|| (currentY == y
&& ((currentDot < 0 && direction > 0)|| ((direction < 0) == (series > currentSeries)))))
&& (nextX != currentX // Edge case: if 2 dots have the same abscissa but different ordinates
|| ((currentY <= nextY) == (direction > 0))))
{
nextX = currentX;
nextY = currentY;
selectedDot = i;
*nextSeries = series;
}
}
}
return selectedDot;
}
int Store::nextDot(int series, int direction, int dot) {
float nextX = INFINITY;
int selectedDot = -1;
double meanX = meanOfColumn(series, 0);
float x = meanX;
if (dot >= 0 && dot < numberOfPairsOfSeries(series)) {
x = get(series, 0, dot);
}
/* We have to scan the Store in opposite ways for the 2 directions to ensure to
* select all dots (even with equal abscissa) */
if (direction > 0) {
for (int index = 0; index < numberOfPairsOfSeries(series); index++) {
/* The conditions to test are in this order:
* - the next dot is the closest one in abscissa to x
* - the next dot is not the same as the selected one
* - the next dot is at the right of the selected one */
if (std::fabs(m_data[series][0][index] - x) < std::fabs(nextX - x) &&
(index != dot) &&
(m_data[series][0][index] >= x)) {
// Handle edge case: 2 dots have same abscissa
if (m_data[series][0][index] != x || (index > dot)) {
nextX = m_data[series][0][index];
selectedDot = index;
}
}
}
// Compare with the mean dot
if (std::fabs(meanX - x) < std::fabs(nextX - x) &&
(numberOfPairsOfSeries(series) != dot) &&
(meanX >= x)) {
if (meanX != x || (numberOfPairsOfSeries(series) > dot)) {
selectedDot = numberOfPairsOfSeries(series);
}
}
} else {
// Compare with the mean dot
if (std::fabs(meanX - x) < std::fabs(nextX - x) &&
(numberOfPairsOfSeries(series) != dot) &&
(meanX <= x)) {
if ((meanX != x) || (numberOfPairsOfSeries(series) < dot)) {
nextX = meanX;
selectedDot = numberOfPairsOfSeries(series);
}
}
for (int index = numberOfPairsOfSeries(series)-1; index >= 0; index--) {
if (std::fabs(m_data[series][0][index] - x) < std::fabs(nextX - x) &&
(index != dot) &&
(m_data[series][0][index] <= x)) {
// Handle edge case: 2 dots have same abscissa
if (m_data[series][0][index] != x || (index < dot)) {
nextX = m_data[series][0][index];
selectedDot = index;
}
}
}
}
return selectedDot;
}
/* Window */
void Store::setDefault() {
float minX = FLT_MAX;
float maxX = -FLT_MAX;
for (int series = 0; series < k_numberOfSeries; series++) {
if (!seriesIsEmpty(series)) {
minX = min(minX, minValueOfColumn(series, 0));
maxX = max(maxX, maxValueOfColumn(series, 0));
}
}
float range = maxX - minX;
setXMin(minX - k_displayHorizontalMarginRatio*range);
setXMax(maxX + k_displayHorizontalMarginRatio*range);
setYAuto(true);
}
/* Series */
bool Store::seriesIsEmpty(int series) const {
return numberOfPairsOfSeries(series) < 2;
}
/* Calculations */
double * Store::coefficientsForSeries(int series, Poincare::Context * globalContext) {
assert(series >= 0 && series <= k_numberOfSeries);
assert(!seriesIsEmpty(series));
uint32_t storeChecksumSeries = storeChecksumForSeries(series);
Poincare::Preferences::AngleUnit currentAngleUnit = Poincare::Preferences::sharedPreferences()->angleUnit();
if (m_angleUnit != currentAngleUnit) {
m_angleUnit = currentAngleUnit;
for (int i = 0; i < k_numberOfSeries; i++) {
if (m_regressionTypes[i] == Model::Type::Trigonometric) {
m_regressionChanged[i] = true;
}
}
}
if (m_regressionChanged[series] || (m_seriesChecksum[series] != storeChecksumSeries)) {
Model * seriesModel = modelForSeries(series);
seriesModel->fit(this, series, m_regressionCoefficients[series], globalContext);
m_regressionChanged[series] = false;
m_seriesChecksum[series] = storeChecksumSeries;
}
return m_regressionCoefficients[series];
}
double Store::doubleCastedNumberOfPairsOfSeries(int series) const {
return DoublePairStore::numberOfPairsOfSeries(series);
}
float Store::maxValueOfColumn(int series, int i) const {
float maxColumn = -FLT_MAX;
for (int k = 0; k < numberOfPairsOfSeries(series); k++) {
maxColumn = max(maxColumn, m_data[series][i][k]);
}
return maxColumn;
}
float Store::minValueOfColumn(int series, int i) const {
float minColumn = FLT_MAX;
for (int k = 0; k < numberOfPairsOfSeries(series); k++) {
minColumn = min(minColumn, m_data[series][i][k]);
}
return minColumn;
}
double Store::squaredValueSumOfColumn(int series, int i) const {
double result = 0;
for (int k = 0; k < numberOfPairsOfSeries(series); k++) {
result += m_data[series][i][k]*m_data[series][i][k];
}
return result;
}
double Store::columnProductSum(int series) const {
double result = 0;
for (int k = 0; k < numberOfPairsOfSeries(series); k++) {
result += m_data[series][0][k]*m_data[series][1][k];
}
return result;
}
double Store::meanOfColumn(int series, int i) const {
return numberOfPairsOfSeries(series) == 0 ? 0 : sumOfColumn(series, i)/numberOfPairsOfSeries(series);
}
double Store::varianceOfColumn(int series, int i) const {
double mean = meanOfColumn(series, i);
return squaredValueSumOfColumn(series, i)/numberOfPairsOfSeries(series) - mean*mean;
}
double Store::standardDeviationOfColumn(int series, int i) const {
return std::sqrt(varianceOfColumn(series, i));
}
double Store::covariance(int series) const {
return columnProductSum(series)/numberOfPairsOfSeries(series) - meanOfColumn(series, 0)*meanOfColumn(series, 1);
}
double Store::slope(int series) const {
return covariance(series)/varianceOfColumn(series, 0);
}
double Store::yIntercept(int series) const {
return meanOfColumn(series, 1) - slope(series)*meanOfColumn(series, 0);
}
double Store::yValueForXValue(int series, double x, Poincare::Context * globalContext) {
Model * model = regressionModel((int)m_regressionTypes[series]);
double * coefficients = coefficientsForSeries(series, globalContext);
return model->evaluate(coefficients, x);
}
double Store::xValueForYValue(int series, double y, Poincare::Context * globalContext) {
Model * model = regressionModel((int)m_regressionTypes[series]);
double * coefficients = coefficientsForSeries(series, globalContext);
return model->levelSet(coefficients, xMin(), xGridUnit()/10.0, xMax(), y, globalContext);
}
double Store::correlationCoefficient(int series) const {
double sd0 = standardDeviationOfColumn(series, 0);
double sd1 = standardDeviationOfColumn(series, 1);
return (sd0 == 0.0 || sd1 == 0.0) ? 1.0 : covariance(series)/(sd0*sd1);
}
double Store::squaredCorrelationCoefficient(int series) const {
double cov = covariance(series);
double v0 = varianceOfColumn(series, 0);
double v1 = varianceOfColumn(series, 1);
return (v0 == 0.0 || v1 == 0.0) ? 1.0 : cov*cov/(v0*v1);
}
Model * Store::regressionModel(int index) {
Model * models[Model::k_numberOfModels] = {&m_linearModel, &m_quadraticModel, &m_cubicModel, &m_quarticModel, &m_logarithmicModel, &m_exponentialModel, &m_powerModel, &m_trigonometricModel, &m_logisticModel};
return models[index];
}
}