Files
Upsilon/poincare/test/function_solver.cpp

238 lines
8.1 KiB
C++

#include <apps/shared/global_context.h>
#include <poincare/expression.h>
#include "helper.h"
using namespace Poincare;
enum class ExtremumType : uint8_t {
Maximum,
Minimum,
Root
};
bool doubles_are_approximately_equal(double d1, double d2) {
bool d2IsNaN = std::isnan(d2);
if (std::isnan(d1)) {
return d2IsNaN;
}
if (d2IsNaN) {
return false;
}
return std::abs(d1-d2) < 0.00001;
}
void assert_next_extrema_are(
ExtremumType extremumType,
int numberOfExtrema,
Coordinate2D<double> * extrema,
Expression e,
const char * symbol,
double start = -1.0,
double step = 0.1,
double max = 100.0,
Preferences::ComplexFormat complexFormat = Preferences::ComplexFormat::Real,
Preferences::AngleUnit angleUnit = Preferences::AngleUnit::Degree)
{
Shared::GlobalContext context;
double currentStart = start;
for (int i = 0; i < numberOfExtrema; i++) {
quiz_assert_log_if_failure(!std::isnan(currentStart), e);
Coordinate2D<double> nextExtrema;
if (extremumType == ExtremumType::Maximum) {
nextExtrema = e.nextMaximum(symbol, currentStart, step, max, &context, complexFormat, angleUnit);
} else if (extremumType == ExtremumType::Minimum) {
nextExtrema = e.nextMinimum(symbol, currentStart, step, max, &context, complexFormat, angleUnit);
} else if (extremumType == ExtremumType::Root) {
nextExtrema = Coordinate2D<double>(e.nextRoot(symbol, currentStart, step, max, &context, complexFormat, angleUnit), 0.0 );
}
currentStart = nextExtrema.x1() + step;
quiz_assert_log_if_failure(
(doubles_are_approximately_equal(extrema[i].x1(), nextExtrema.x1()))
&& (doubles_are_approximately_equal(extrema[i].x2(), nextExtrema.x2())),
e);
}
}
QUIZ_CASE(poincare_function_extremum) {
const char * symbol = "a";
int symbolLength = strlen(symbol);
{
// cos
Expression e = Cosine::Builder(Symbol::Builder(symbol, symbolLength));
{
constexpr int numberOfMaxima = 3;
Coordinate2D<double> maxima[numberOfMaxima] = {
Coordinate2D<double>(0.0, 1.0),
Coordinate2D<double>(360.0, 1.0),
Coordinate2D<double>(NAN, NAN)};
assert_next_extrema_are(ExtremumType::Maximum, numberOfMaxima, maxima, e, symbol, -1.0, 0.1, 500.0);
}
{
constexpr int numberOfMinima = 1;
Coordinate2D<double> minima[numberOfMinima] = {
Coordinate2D<double>(180.0, -1.0)};
assert_next_extrema_are(ExtremumType::Minimum, numberOfMinima, minima, e, symbol, 0.0, 0.1, 300.0);
}
}
{
// x^2
Expression e = Power::Builder(Symbol::Builder(symbol, symbolLength), Rational::Builder(2));
{
constexpr int numberOfMaxima = 1;
Coordinate2D<double> maxima[numberOfMaxima] = {
Coordinate2D<double>(NAN, NAN)};
assert_next_extrema_are(ExtremumType::Maximum, numberOfMaxima, maxima, e, symbol);
}
{
constexpr int numberOfMinima = 1;
Coordinate2D<double> minima[numberOfMinima] = {
Coordinate2D<double>(0.0, 0.0)};
assert_next_extrema_are(ExtremumType::Minimum, numberOfMinima, minima, e, symbol);
}
}
{
// 3
Expression e = Rational::Builder(3);
{
constexpr int numberOfMaxima = 1;
Coordinate2D<double> maxima[numberOfMaxima] = {
Coordinate2D<double>(NAN, 3.0)};
assert_next_extrema_are(ExtremumType::Maximum, numberOfMaxima, maxima, e, symbol);
}
{
constexpr int numberOfMinima = 1;
Coordinate2D<double> minima[numberOfMinima] = {
Coordinate2D<double>(NAN, 3.0)};
assert_next_extrema_are(ExtremumType::Minimum, numberOfMinima, minima, e, symbol);
}
}
{
// 0
Expression e = Rational::Builder(0);
{
constexpr int numberOfMaxima = 1;
Coordinate2D<double> maxima[numberOfMaxima] = {
Coordinate2D<double>(NAN, 0.0)};
assert_next_extrema_are(ExtremumType::Maximum, numberOfMaxima, maxima, e, symbol);
}
{
constexpr int numberOfMinima = 1;
Coordinate2D<double> minima[numberOfMinima] = {
Coordinate2D<double>(NAN, 0.0)};
assert_next_extrema_are(ExtremumType::Minimum, numberOfMinima, minima, e, symbol);
}
}
}
QUIZ_CASE(poincare_function_root) {
const char * symbol = "a";
int symbolLength = strlen(symbol);
{
// cos
Expression e = Cosine::Builder(Symbol::Builder(symbol, symbolLength));
constexpr int numberOfRoots = 3;
Coordinate2D<double> roots[numberOfRoots] = {
Coordinate2D<double>(90.0, 0.0),
Coordinate2D<double>(270.0, 0.0),
Coordinate2D<double>(450.0, 0.0)};
assert_next_extrema_are(ExtremumType::Root, numberOfRoots, roots, e, symbol, 0.0, 0.1, 500.0);
}
{
// x^2
Expression e = Power::Builder(Symbol::Builder(symbol, symbolLength), Rational::Builder(2));
constexpr int numberOfRoots = 1;
Coordinate2D<double> roots[numberOfRoots] = {
Coordinate2D<double>(0.0, 0.0)};
assert_next_extrema_are(ExtremumType::Root, numberOfRoots, roots, e, symbol);
}
{
// x^2-4
Expression e = Subtraction::Builder(Power::Builder(Symbol::Builder(symbol, symbolLength), Rational::Builder(2)), Rational::Builder(4));
constexpr int numberOfRoots = 2;
Coordinate2D<double> roots[numberOfRoots] = {
Coordinate2D<double>(-2.0, 0.0),
Coordinate2D<double>(2.0, 0.0)};
assert_next_extrema_are(ExtremumType::Root, numberOfRoots, roots, e, symbol, -5.0);
}
{
// 3
Expression e = Rational::Builder(3);
constexpr int numberOfRoots = 1;
Coordinate2D<double> roots[numberOfRoots] = {
Coordinate2D<double>(NAN, 0.0)};
assert_next_extrema_are(ExtremumType::Root, numberOfRoots, roots, e, symbol);
}
{
// 0
Expression e = Rational::Builder(0);
constexpr int numberOfRoots = 1;
Coordinate2D<double> roots[numberOfRoots] = {
Coordinate2D<double>(-0.9, 0.0)};
assert_next_extrema_are(ExtremumType::Root, numberOfRoots, roots, e, symbol);
}
}
void assert_next_intersections_are(
Expression otherExpression,
int numberOfIntersections,
Coordinate2D<double> * intersections,
Expression e,
const char * symbol,
double start = -1.0,
double step = 0.1,
double max = 500.0,
Preferences::ComplexFormat complexFormat = Preferences::ComplexFormat::Real,
Preferences::AngleUnit angleUnit = Preferences::AngleUnit::Degree)
{
Shared::GlobalContext context;
double currentStart = start;
for (int i = 0; i < numberOfIntersections; i++) {
quiz_assert_log_if_failure(!std::isnan(currentStart), e);
Coordinate2D<double> nextIntersection = e.nextIntersection(symbol, currentStart, step, max, &context, complexFormat, angleUnit, otherExpression);
currentStart = nextIntersection.x1() + step;
quiz_assert_log_if_failure(
(doubles_are_approximately_equal(intersections[i].x1(), nextIntersection.x1()))
&& (doubles_are_approximately_equal(intersections[i].x2(), nextIntersection.x2())),
e);
}
}
QUIZ_CASE(poincare_function_intersection) {
const char * symbol = "a";
int symbolLength = strlen(symbol);
Expression e = Cosine::Builder(Symbol::Builder(symbol, symbolLength));
{
// cos with y=2
Expression otherExpression = Rational::Builder(2);
constexpr int numberOfIntersections = 1;
Coordinate2D<double> intersections[numberOfIntersections] = {
Coordinate2D<double>(NAN, NAN)};
assert_next_intersections_are(otherExpression, numberOfIntersections, intersections, e, symbol);
}
{
// cos with y=1
Expression otherExpression = Rational::Builder(1);
constexpr int numberOfIntersections = 2;
Coordinate2D<double> intersections[numberOfIntersections] = {
Coordinate2D<double>(0.0, 1.0),
Coordinate2D<double>(360.0, 1.0)};
assert_next_intersections_are(otherExpression, numberOfIntersections, intersections, e, symbol);
}
{
// cos with y=0
Expression otherExpression = Rational::Builder(0);
constexpr int numberOfIntersections = 3;
Coordinate2D<double> intersections[numberOfIntersections] = {
Coordinate2D<double>(90.0, 0.0),
Coordinate2D<double>(270.0, 0.0),
Coordinate2D<double>(450.0, 0.0)};
assert_next_intersections_are(otherExpression, numberOfIntersections, intersections, e, symbol);
}
}