Files
Upsilon/ion/src/device/bootloader/boot/rt0.cpp
2022-03-23 21:51:06 +01:00

282 lines
11 KiB
C++

#include <stdint.h>
#include <string.h>
#include <ion.h>
#include <boot/isr.h>
#include <drivers/board.h>
#include <drivers/rtc.h>
#include <drivers/reset.h>
#include <drivers/timing.h>
#include <drivers/power.h>
#include <drivers/wakeup.h>
#include <drivers/battery.h>
#include <drivers/usb.h>
#include <drivers/led.h>
#include <kandinsky.h>
#include <regs/config/pwr.h>
#include <regs/config/rcc.h>
#include <regs/regs.h>
typedef void (*cxx_constructor)();
extern "C" {
extern char _data_section_start_flash;
extern char _data_section_start_ram;
extern char _data_section_end_ram;
extern char _bss_section_start_ram;
extern char _bss_section_end_ram;
extern cxx_constructor _init_array_start;
extern cxx_constructor _init_array_end;
extern char _isr_vector_table_start_flash;
extern char _isr_vector_table_start_ram;
extern char _isr_vector_table_end_ram;
}
/* In order to ensure that this method is execute from the external flash, we
* forbid inlining it.*/
static void __attribute__((noinline)) external_flash_start() {
/* Init the peripherals. We do not initialize the backlight in case there is
* an on boarding app: indeed, we don't want the user to see the LCD tests
* happening during the on boarding app. The backlight will be initialized
* after the Power-On Self-Test if there is one or before switching to the
* home app otherwise. */
Ion::Device::Board::initPeripherals(false);
return ion_main(0, nullptr);
}
/* This additional function call 'jump_to_external_flash' serves two purposes:
* - By default, the compiler is free to inline any function call he wants. If
* the compiler decides to inline some functions that make use of VFP
* registers, it will need to push VFP them onto the stack in calling
* function's prologue.
* Problem: in start()'s prologue, we would never had a chance to enable the
* FPU since this function is the first thing called after reset.
* We can safely assume that neither memcpy, memset, nor any Ion::Device::init*
* method will use floating-point numbers, but ion_main very well can.
* To make sure ion_main's potential usage of VFP registers doesn't bubble-up to
* start(), we isolate it in its very own non-inlined function call.
* - To avoid jumping on the external flash when it is shut down, we ensure
* there is no symbol references from the internal flash to the external
* flash except this jump. In order to do that, we isolate this
* jump in a symbol that we link in a special section separated from the
* internal flash section. We can than forbid cross references from the
* internal flash to the external flash. */
static void __attribute__((noinline)) jump_to_external_flash() {
external_flash_start();
}
void __attribute__((noinline)) abort_init() {
Ion::Device::Board::shutdownPeripherals(true);
Ion::Device::Board::initPeripherals(false);
Ion::Timing::msleep(100);
Ion::Backlight::init();
Ion::LED::setColor(KDColorRed);
Ion::Backlight::setBrightness(180);
}
void __attribute__((noinline)) abort_economy() {
int brightness = Ion::Backlight::brightness();
bool plugged = Ion::USB::isPlugged();
while (brightness > 0) {
brightness--;
Ion::Backlight::setBrightness(brightness);
Ion::Timing::msleep(50);
if(plugged || (!plugged && Ion::USB::isPlugged())){
Ion::Backlight::setBrightness(180);
return;
}
}
Ion::Backlight::shutdown();
while (1) {
Ion::Device::Power::sleepConfiguration();
Ion::Device::WakeUp::onUSBPlugging();
Ion::Device::WakeUp::onChargingEvent();
Ion::Device::Power::internalFlashSuspend(true);
if (!plugged && Ion::USB::isPlugged()) {
break;
}
plugged = Ion::USB::isPlugged();
};
Ion::Device::Board::setStandardFrequency(Ion::Device::Board::Frequency::High);
Ion::Backlight::init();
Ion::Backlight::setBrightness(180);
}
void __attribute__((noinline)) abort_sleeping() {
if (Ion::Battery::level() != Ion::Battery::Charge::EMPTY) {
return;
}
// we don't use Ion::Power::suspend because we don't want to move the exam buffer into the internal
Ion::Device::Board::shutdownPeripherals(true);
bool plugged = Ion::USB::isPlugged();
while (1) {
Ion::Device::Battery::initGPIO();
Ion::Device::USB::initGPIO();
Ion::Device::LED::init();
Ion::Device::Power::sleepConfiguration();
Ion::Device::Board::shutdownPeripherals(true);
Ion::Device::WakeUp::onUSBPlugging();
Ion::Device::WakeUp::onChargingEvent();
Ion::Device::Power::internalFlashSuspend(true);
Ion::Device::USB::initGPIO();
if (!plugged && Ion::USB::isPlugged()) {
break;
}
plugged = Ion::USB::isPlugged();
}
Ion::Device::Board::setStandardFrequency(Ion::Device::Board::Frequency::High);
abort_init();
}
void __attribute__((noinline)) abort_core(const char * text) {
Ion::Timing::msleep(100);
int counting;
while (true) {
counting = 0;
if (Ion::Battery::level() == Ion::Battery::Charge::EMPTY) {
abort_sleeping();
abort_screen(text);
}
Ion::USB::enable();
Ion::Battery::Charge previous_state = Ion::Battery::level();
while (!Ion::USB::isEnumerated()) {
if (Ion::Battery::level() == Ion::Battery::Charge::LOW) {
if (previous_state != Ion::Battery::Charge::LOW) {
previous_state = Ion::Battery::Charge::LOW;
counting = 0;
}
Ion::Timing::msleep(500);
if (counting >= 20) {
abort_sleeping();
abort_screen(text);
counting = -1;
}
counting++;
} else {
if (previous_state == Ion::Battery::Charge::LOW) {
previous_state = Ion::Battery::level();
counting = 0;
}
Ion::Timing::msleep(100);
if (counting >= 300) {
abort_economy();
counting = -1;
}
counting++;
}
}
Ion::USB::DFU(false, false, 0);
}
}
void __attribute__((noinline)) abort_screen(const char * text){
KDRect screen = KDRect(0, 0, Ion::Display::Width, Ion::Display::Height);
Ion::Display::pushRectUniform(KDRect(0, 0, Ion::Display::Width, Ion::Display::Height), KDColor::RGB24(0xffffff));
KDContext* ctx = KDIonContext::sharedContext();
ctx->setOrigin(KDPointZero);
ctx->setClippingRect(screen);
ctx->drawString("UPSILON CRASH", KDPoint(90, 10), KDFont::LargeFont, KDColorRed, KDColor::RGB24(0xffffff));
ctx->drawString("An error occurred", KDPoint(10, 30), KDFont::SmallFont, KDColorBlack, KDColor::RGB24(0xffffff));
ctx->drawString("If you have some important data, please", KDPoint(10, 45), KDFont::SmallFont, KDColorBlack, KDColor::RGB24(0xffffff));
ctx->drawString("use bit.ly/upsiBackup to backup them.", KDPoint(10, 60), KDFont::SmallFont, KDColorBlack, KDColor::RGB24(0xffffff));
ctx->drawString("YOU WILL LOSE ALL YOUR DATA", KDPoint(10, 85), KDFont::SmallFont, KDColorBlack, KDColor::RGB24(0xffffff));
ctx->drawString("→ You can try to reboot by presssing the", KDPoint(10, 110), KDFont::SmallFont, KDColorBlack, KDColor::RGB24(0xffffff));
ctx->drawString("reset button at the back of the calculator", KDPoint(10, 125), KDFont::SmallFont, KDColorBlack, KDColor::RGB24(0xffffff));
ctx->drawString("→ If Upsilon keeps crashing, you can connect", KDPoint(10, 140), KDFont::SmallFont, KDColorBlack, KDColor::RGB24(0xffffff));
ctx->drawString("the calculator to a computer or a phone", KDPoint(10, 160), KDFont::SmallFont, KDColorBlack, KDColor::RGB24(0xffffff));
ctx->drawString("and try to reinstall Upsilon", KDPoint(10, 175), KDFont::SmallFont, KDColorBlack, KDColor::RGB24(0xffffff));
ctx->drawString(text, KDPoint(220, 200), KDFont::SmallFont, KDColorRed, KDColor::RGB24(0xffffff));
}
void __attribute__((noinline)) abort() {
abort_init();
abort_screen("HARDFAULT");
abort_core("HARDFAULT");
}
void __attribute__((noinline)) nmi_abort() {
abort_init();
abort_screen("NMIFAULT");
abort_core("NMIFAULT");
}
void __attribute__((noinline)) bf_abort() {
abort_init();
abort_screen("BUSFAULT");
abort_core("BUSFAULT");
}
void __attribute__((noinline)) uf_abort() {
abort_init();
abort_screen("USAGEFAULT");
abort_core("USAGEFAULT");
}
/* When 'start' is executed, the external flash is supposed to be shutdown. We
* thus forbid inlining to prevent executing this code from external flash
* (just in case 'start' was to be called from the external flash). */
void __attribute__((noinline)) start() {
/* This is where execution starts after reset.
* Many things are not initialized yet so the code here has to pay attention. */
/* Initialize the FPU as early as possible.
* For example, static C++ objects are very likely to manipulate float values */
/* Copy data section to RAM
* The data section is R/W but its initialization value matters. It's stored
* in Flash, but linked as if it were in RAM. Now's our opportunity to copy
* it. Note that until then the data section (e.g. global variables) contains
* garbage values and should not be used. */
size_t dataSectionLength = (&_data_section_end_ram - &_data_section_start_ram);
memcpy(&_data_section_start_ram, &_data_section_start_flash, dataSectionLength);
/* Zero-out the bss section in RAM
* Until we do, any uninitialized global variable will be unusable. */
size_t bssSectionLength = (&_bss_section_end_ram - &_bss_section_start_ram);
memset(&_bss_section_start_ram, 0, bssSectionLength);
/* Call static C++ object constructors
* The C++ compiler creates an initialization function for each static object.
* The linker then stores the address of each of those functions consecutively
* between _init_array_start and _init_array_end. So to initialize all C++
* static objects we just have to iterate between theses two addresses and
* call the pointed function. */
#define SUPPORT_CPP_GLOBAL_CONSTRUCTORS 0
#if SUPPORT_CPP_GLOBAL_CONSTRUCTORS
for (cxx_constructor * c = &_init_array_start; c<&_init_array_end; c++) {
(*c)();
}
#else
/* In practice, static initialized objects are a terrible idea. Since the init
* order is not specified, most often than not this yields the dreaded static
* init order fiasco. How about bypassing the issue altogether? */
if (&_init_array_start != &_init_array_end) {
abort();
}
#endif
/* Copy isr_vector_table section to RAM
* The isr table must be within the memory mapped by the microcontroller (it
* can't live in the external flash). */
size_t isrSectionLength = (&_isr_vector_table_end_ram - &_isr_vector_table_start_ram);
memcpy(&_isr_vector_table_start_ram, &_isr_vector_table_start_flash, isrSectionLength);
Ion::Device::Board::init();
/* At this point, we initialized clocks and the external flash but no other
* peripherals. */
jump_to_external_flash();
abort();
}
void __attribute__((interrupt, noinline)) isr_systick() {
auto t = Ion::Device::Timing::MillisElapsed;
t++;
Ion::Device::Timing::MillisElapsed = t;
}