Files
Upsilon/python/port/mod/matplotlib/pyplot/modpyplot.cpp
Yaya-Cout 169fb7404e Fix spelling (#128)
* Fix spelling in .cpp files

* Fix spelling in all files
2022-01-20 17:21:35 +01:00

458 lines
14 KiB
C++

extern "C" {
#include "modpyplot.h"
}
#include <assert.h>
#include <escher/palette.h>
#include "port.h"
#include "plot_controller.h"
Matplotlib::PlotStore * sPlotStore = nullptr;
Matplotlib::PlotController * sPlotController = nullptr;
static int paletteIndex = 0;
// Private helper
// Method to populate items with a scalar or an array argument
static size_t extractArgument(mp_obj_t arg, mp_obj_t ** items) {
size_t itemLength;
if (mp_obj_is_type(arg, &mp_type_tuple) || mp_obj_is_type(arg, &mp_type_list)) {
mp_obj_get_array(arg, &itemLength, items);
} else {
itemLength = 1;
*items = m_new(mp_obj_t, 1);
(*items)[0] = arg;
}
return itemLength;
}
// Extract two scalar or array arguments and check for their strictly equal dimension
static size_t extractArgumentsAndCheckEqualSize(mp_obj_t x, mp_obj_t y, mp_obj_t ** xItems, mp_obj_t ** yItems) {
size_t xLength = extractArgument(x, xItems);
size_t yLength = extractArgument(y, yItems);
if (xLength != yLength) {
mp_raise_ValueError("x and y must be the same size");
}
return xLength;
}
/* Extract one scalar or array arguments and check that it is either:
* - of size 1
* - of the required size
*/
static size_t extractArgumentAndValidateSize(mp_obj_t arg, size_t requiredlength, mp_obj_t ** items) {
size_t itemLength = extractArgument(arg, items);
if (itemLength > 1 && requiredlength > 1 && itemLength != requiredlength) {
mp_raise_ValueError("shape mismatch");
}
return itemLength;
}
// Get color from keyword arguments if possible
bool colorFromKeywordArgument(mp_map_elem_t * elemColor, KDColor * color) {
if (elemColor != nullptr) {
*color = MicroPython::Color::Parse(elemColor->value);
return true;
} else {
*color = Palette::nextDataColor(&paletteIndex);
return false;
}
}
// Internal functions
mp_obj_t modpyplot___init__() {
static Matplotlib::PlotStore plotStore;
static Matplotlib::PlotController plotController(&plotStore);
sPlotStore = &plotStore;
sPlotController = &plotController;
sPlotStore->flush();
paletteIndex = 0;
return mp_const_none;
}
void modpyplot_gc_collect() {
if (sPlotStore == nullptr) {
return;
}
MicroPython::collectRootsAtAddress(
reinterpret_cast<char *>(sPlotStore),
sizeof(Matplotlib::PlotStore)
);
}
void modpyplot_flush_used_heap() {
if (sPlotStore) {
// Clean the store object
sPlotStore->flush();
}
}
/* arrow(x,y,dx,dy, KW : head_width, color)
* x, y, dx, dy scalars
* */
mp_obj_t modpyplot_arrow(size_t n_args, const mp_obj_t *args, mp_map_t* kw_args) {
assert(sPlotStore != nullptr);
sPlotStore->setShow(true);
if (n_args > 4) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,"arrow() takes 4 positional arguments but %d were given",n_args));
}
mp_map_elem_t * elem;
// Setting arrow width
elem = mp_map_lookup(kw_args, MP_OBJ_NEW_QSTR(MP_QSTR_head_width), MP_MAP_LOOKUP);
/* Default head_width is 0.0f because we want a default width in pixel
* coordinates which is handled by CurveView::drawArrow. */
mp_obj_t arrowWidth = (elem == nullptr) ? mp_obj_new_float(0.0f) : elem->value;
// Setting arrow color
KDColor color;
// color keyword
elem = mp_map_lookup(kw_args, MP_OBJ_NEW_QSTR(MP_QSTR_color), MP_MAP_LOOKUP);
colorFromKeywordArgument(elem, &color);
// Adding the object to the plot
assert(n_args >= 4);
sPlotStore->addSegment(args[0], args[1], mp_obj_new_float(mp_obj_get_float(args[0]) + mp_obj_get_float(args[2])), mp_obj_new_float(mp_obj_get_float(args[1]) + mp_obj_get_float(args[3])), color, arrowWidth);
return mp_const_none;
}
/* axis(arg)
* - arg = "on", "off", "auto"
* - arg = True, False
* - arg = [xmin, xmax, ymin, ymax], (xmin, xmax, ymin, ymax)
* Returns : (xmin, xmax, ymin, ymax) : float */
mp_obj_t modpyplot_axis(size_t n_args, const mp_obj_t *args) {
assert(sPlotStore != nullptr);
sPlotStore->setShow(true);
if (n_args == 1) {
mp_obj_t arg = args[0];
if (mp_obj_is_str(arg)) {
if (mp_obj_str_equal(arg, mp_obj_new_str("on", 2))) {
sPlotStore->setAxesRequested(true);
} else if (mp_obj_str_equal(arg, mp_obj_new_str("off", 3))) {
sPlotStore->setAxesRequested(false);
} else if (mp_obj_str_equal(arg, mp_obj_new_str("auto", 4))) {
sPlotStore->setAxesRequested(true);
sPlotStore->setAxesAuto(true);
} else {
mp_raise_ValueError("Unrecognized string given to axis; try 'on', 'off' or 'auto'");
}
#if MICROPY_OBJ_IMMEDIATE_OBJS
/* This couldn't be done at the time of writing because mp_obj_is_bool didn't
* exist just yet. */
#error Use mp_obj_is_bool instead of mp_obj_is_type
#endif
} else if (mp_obj_is_type(arg, &mp_type_bool)) {
sPlotStore->setAxesRequested(mp_obj_is_true(arg));
} else if (mp_obj_is_type(arg, &mp_type_tuple) || mp_obj_is_type(arg, &mp_type_list)) {
mp_obj_t * items;
mp_obj_get_array_fixed_n(arg, 4, &items);
sPlotStore->setXMin(mp_obj_get_float(items[0]));
sPlotStore->setXMax(mp_obj_get_float(items[1]));
sPlotStore->setYMin(mp_obj_get_float(items[2]));
sPlotStore->setYMax(mp_obj_get_float(items[3]));
sPlotStore->setAxesAuto(false);
} else {
mp_raise_TypeError("the first argument to axis() must be an iterable of the form [xmin, xmax, ymin, ymax]");
}
}
// Build the return value
mp_obj_t coords[4];
coords[0] = mp_obj_new_float(sPlotStore->xMin());
coords[1] = mp_obj_new_float(sPlotStore->xMax());
coords[2] = mp_obj_new_float(sPlotStore->yMin());
coords[3] = mp_obj_new_float(sPlotStore->yMax());
return mp_obj_new_tuple(4, coords);
}
/* bar(x, height, width, bottom, KW :color)
* 'x', 'height', 'width' and 'bottom' can either be a scalar or an array/tuple of
* scalar.
* 'width' default value is 0.8
* 'bottom' default value is None
* */
mp_obj_t modpyplot_bar(size_t n_args, const mp_obj_t *args, mp_map_t* kw_args) {
assert(sPlotStore != nullptr);
if (n_args > 4) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,"bar() takes from 2 to 4 positional arguments but %d were given",n_args));
}
sPlotStore->setShow(true);
mp_obj_t * xItems;
mp_obj_t * hItems;
mp_obj_t * wItems;
mp_obj_t * bItems;
assert(n_args >= 2);
// x arg
size_t xLength = extractArgument(args[0], &xItems);
// height arg
size_t hLength = extractArgumentAndValidateSize(args[1], xLength, &hItems);
// width arg
size_t wLength = 1;
if (n_args >= 3) {
wLength = extractArgumentAndValidateSize(args[2], xLength, &wItems);
} else {
wItems = m_new(mp_obj_t, 1);
wItems[0] = mp_obj_new_float(0.8f);
}
// bottom arg
size_t bLength = 1;
if (n_args >= 4) {
bLength = extractArgumentAndValidateSize(args[3], xLength, &bItems);
} else {
bItems = m_new(mp_obj_t, 1);
bItems[0] = mp_obj_new_float(0.0f);
}
// Setting bar color
// color keyword
KDColor color;
// color keyword
mp_map_elem_t * elem = mp_map_lookup(kw_args, MP_OBJ_NEW_QSTR(MP_QSTR_color), MP_MAP_LOOKUP);
colorFromKeywordArgument(elem, &color);
for (size_t i=0; i<xLength; i++) {
mp_obj_t iH = hItems[hLength > 1 ? i : 0];
mp_obj_t iW = wItems[wLength > 1 ? i : 0];
mp_obj_t iB = bItems[bLength > 1 ? i : 0];
mp_obj_t iX = xItems[i];
float iWf = mp_obj_get_float(iW);
float iXf = mp_obj_get_float(iX);
mp_obj_t rectLeft = mp_obj_new_float(iXf - iWf/2.0f);
mp_obj_t rectRight = mp_obj_new_float(iXf + iWf/2.0f);
mp_obj_t rectBottom = iB;
mp_obj_t rectTop = mp_obj_new_float(mp_obj_get_float(iH) + mp_obj_get_float(iB));
if (mp_obj_get_float(iH) < 0.0) {
mp_obj_t temp = rectTop;
rectTop = rectBottom;
rectBottom = temp;
}
sPlotStore->addRect(rectLeft, rectRight, rectTop, rectBottom, color);
}
return mp_const_none;
}
mp_obj_t modpyplot_grid(size_t n_args, const mp_obj_t *args) {
assert(sPlotStore != nullptr);
sPlotStore->setShow(true);
if (n_args == 0) {
// Toggle the grid visibility
sPlotStore->setGridRequested(!sPlotStore->gridRequested());
} else {
assert(n_args >= 1);
sPlotStore->setGridRequested(mp_obj_is_true(args[0]));
}
return mp_const_none;
}
/* hist(x, bins KW : color)
* 'x' array
* 'bins': (default value 10)
* - int (number of bins)
* - sequence of bins
* */
mp_obj_t modpyplot_hist(size_t n_args, const mp_obj_t *args, mp_map_t* kw_args ) {
if (n_args > 2) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,"hist() takes from 1 to 2 positional arguments but %d were given",n_args));
}
assert(sPlotStore != nullptr);
sPlotStore->setShow(true);
// Sort data to easily get the minimal and maximal value and count bin sizes
mp_obj_t * xItems;
assert(n_args >= 1);
size_t xLength = extractArgument(args[0], &xItems);
if (xLength == 0) {
return mp_const_none;
}
mp_obj_t xList = mp_obj_new_list(xLength, xItems);
mp_obj_list_sort(1, &xList, (mp_map_t*)&mp_const_empty_map);
mp_obj_list_get(xList, &xLength, &xItems);
assert(xLength > 0);
mp_float_t min = mp_obj_get_float(xItems[0]);
mp_float_t max = mp_obj_get_float(xItems[xLength - 1]);
// TODO: memory optimization
// Don't create a list of edges, compute the edge on the go if not present?
mp_obj_t * edgeItems;
size_t nBins;
// bin arg
if (n_args >= 2 && (mp_obj_is_type(args[1], &mp_type_tuple) || mp_obj_is_type(args[1], &mp_type_list))) {
size_t nEdges;
mp_obj_get_array(args[1], &nEdges, &edgeItems);
nBins = nEdges -1;
} else {
nBins = 10;
if (n_args >= 2) {
nBins = mp_obj_get_int(args[1]);
}
mp_float_t binWidth = (max-min)/nBins;
// Create a array of bins
edgeItems = m_new(mp_obj_t, nBins + 1);
// Handle empty range case
if (max - min <= FLT_EPSILON) {
binWidth = 1.0;
nBins = 1;
}
// Fill the bin edges list
for (size_t i = 0; i < nBins+1; i++) {
edgeItems[i] = mp_obj_new_float(min+i*binWidth);
}
}
// Initialize bins list
mp_obj_t * binItems = m_new(mp_obj_t, nBins);
for (size_t i=0; i<nBins; i++) {
binItems[i] = MP_OBJ_NEW_SMALL_INT(0);
}
// Fill bins list by linearly scanning the x and incrementing the bin count
// Linearity is enabled thanks to sorting
size_t binIndex = 0;
size_t xIndex = 0;
while (binIndex < nBins) {
mp_float_t lowerBound = mp_obj_get_float(edgeItems[binIndex]);
// Skip xItem if below the lower bound
while (xIndex < xLength && mp_obj_get_float(xItems[xIndex]) < lowerBound) {
xIndex++;
}
mp_float_t upperBound = mp_obj_get_float(edgeItems[binIndex+1]);
while (xIndex < xLength && (mp_obj_get_float(xItems[xIndex]) < upperBound || (binIndex == nBins - 1 && mp_obj_get_float(xItems[xIndex]) == upperBound))) {
assert(mp_obj_get_float(xItems[xIndex]) >= lowerBound);
// Increment the bin count
binItems[binIndex] = MP_OBJ_NEW_SMALL_INT(MP_OBJ_SMALL_INT_VALUE(binItems[binIndex]) + 1);
xIndex++;
}
binIndex++;
}
// Setting hist color
// color keyword
KDColor color;
// color keyword
mp_map_elem_t * elem = mp_map_lookup(kw_args, MP_OBJ_NEW_QSTR(MP_QSTR_color), MP_MAP_LOOKUP);
colorFromKeywordArgument(elem, &color);
for (size_t i=0; i<nBins; i++) {
sPlotStore->addRect(edgeItems[i], edgeItems[i+1], binItems[i], mp_obj_new_float(0.0), color);
}
return mp_const_none;
}
/* scatter(x, y, KW : color)
* - x, y: list
* - x, y: scalar
* */
mp_obj_t modpyplot_scatter(size_t n_args, const mp_obj_t *args, mp_map_t* kw_args) {
assert(sPlotStore != nullptr);
if (n_args > 2) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,"scatter() takes 2 positional arguments but %d were given",n_args));
}
sPlotStore->setShow(true);
mp_obj_t * xItems, * yItems;
assert(n_args >= 2);
size_t length = extractArgumentsAndCheckEqualSize(args[0], args[1], &xItems, &yItems);
// Setting scatter color
// color keyword
KDColor color;
// c keyword
mp_map_elem_t * elem = mp_map_lookup(kw_args, MP_OBJ_NEW_QSTR(MP_QSTR_c), MP_MAP_LOOKUP);
colorFromKeywordArgument(elem, &color);
// color keyword
elem = mp_map_lookup(kw_args, MP_OBJ_NEW_QSTR(MP_QSTR_color), MP_MAP_LOOKUP);
colorFromKeywordArgument(elem, &color);
for (size_t i=0; i<length; i++) {
sPlotStore->addDot(xItems[i], yItems[i], color);
}
return mp_const_none;
}
/* plot(x, y) plots the curve (x, y, KW : color)
* plot(y) plots the curve x as index array ([0,1,2...],y)
* */
mp_obj_t modpyplot_plot(size_t n_args, const mp_obj_t *args,mp_map_t* kw_args) {
assert(sPlotStore != nullptr);
sPlotStore->setShow(true);
if (n_args > 3) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,"plot() takes 3 positional arguments but %d were given",n_args));
}
mp_obj_t * xItems, * yItems;
size_t length;
if (n_args == 1) {
length = extractArgument(args[0], &yItems);
// Create the default xItems: [0, 1, 2,...]
xItems = m_new(mp_obj_t, length);
for (size_t i = 0; i < length; i++) {
xItems[i] = mp_obj_new_float((float)i);
}
} else {
assert(n_args >= 2);
length = extractArgumentsAndCheckEqualSize(args[0], args[1], &xItems, &yItems);
}
// Setting plot color
KDColor color;
bool isUserSet = false;
// c keyword
mp_map_elem_t * elem = mp_map_lookup(kw_args, MP_OBJ_NEW_QSTR(MP_QSTR_c), MP_MAP_LOOKUP);
isUserSet = colorFromKeywordArgument(elem, &color);
// color keyword
elem = mp_map_lookup(kw_args, MP_OBJ_NEW_QSTR(MP_QSTR_color), MP_MAP_LOOKUP);
isUserSet = isUserSet | colorFromKeywordArgument(elem, &color);
// Eventual third positional argument
if (!isUserSet && n_args >= 3) {
color = MicroPython::Color::Parse(args[2]);
}
for (int i=0; i<(int)length-1; i++) {
sPlotStore->addSegment(xItems[i], yItems[i], xItems[i+1], yItems[i+1], color);
}
return mp_const_none;
}
mp_obj_t modpyplot_text(mp_obj_t x, mp_obj_t y, mp_obj_t s) {
assert(sPlotStore != nullptr);
sPlotStore->setShow(true);
// Input parameter validation
mp_obj_get_float(x);
mp_obj_get_float(y);
mp_obj_str_get_str(s);
sPlotStore->addLabel(x, y, s);
return mp_const_none;
}
mp_obj_t modpyplot_show() {
if (!sPlotStore->show()) {
return mp_const_none;
}
MicroPython::ExecutionEnvironment * env = MicroPython::ExecutionEnvironment::currentExecutionEnvironment();
env->displayViewController(sPlotController);
sPlotStore->setShow(false);
return mp_const_none;
}