Files
Upsilon/poincare/test/expression_properties.cpp
Gabriel Ozouf 52dcd8e749 [poincare/unit] Restructure Unit
1. Information about a unit's dimension now uses inheritance.
   _m is an instance of DistanceAlias, which is derived from Alias.
   A UnitNode now keeps a pointer to an Alias and one to a Prefix.
   All aliases are still defined as constexpr.
   This cleans up a lot of the code used namely for computing the
   additional outputs in Calculation.

2. Instead of being defined with a string, each unit is described by its
   ratio with the base SI unit (ex: _L is 0.001 instead of "0.001_m^3").
   This greatly speeds up the calculations using units, as the algorithm
   to find the best unit used to parse the definition.

Change-Id: I4d6ed6ad4cb967026a3f01a335aec270066e2b9f
2020-11-04 15:11:45 +01:00

456 lines
26 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#include <apps/shared/global_context.h>
#include "helper.h"
using namespace Poincare;
QUIZ_CASE(poincare_properties_is_number) {
quiz_assert(BasedInteger::Builder("2",Integer::Base::Binary).isNumber());
quiz_assert(BasedInteger::Builder("2",Integer::Base::Decimal).isNumber());
quiz_assert(BasedInteger::Builder("2",Integer::Base::Hexadecimal).isNumber());
quiz_assert(Decimal::Builder("2",3).isNumber());
quiz_assert(Float<float>::Builder(1.0f).isNumber());
quiz_assert(Infinity::Builder(true).isNumber());
quiz_assert(Undefined::Builder().isNumber());
quiz_assert(Rational::Builder(2,3).isNumber());
quiz_assert(!Symbol::Builder('a').isNumber());
quiz_assert(!Multiplication::Builder(Rational::Builder(1), Rational::Builder(2)).isNumber());
quiz_assert(!Addition::Builder(Rational::Builder(1), Rational::Builder(2)).isNumber());
}
QUIZ_CASE(poincare_properties_is_random) {
quiz_assert(Random::Builder().isRandom());
quiz_assert(Randint::Builder(Rational::Builder(1), Rational::Builder(2)).isRandom());
quiz_assert(!Symbol::Builder('a').isRandom());
quiz_assert(!Rational::Builder(2,3).isRandom());
}
QUIZ_CASE(poincare_properties_is_parametered_expression) {
quiz_assert(Derivative::Builder(Rational::Builder(1), Symbol::Builder('x'), Rational::Builder(2)).isParameteredExpression());
quiz_assert(Integral::Builder(Rational::Builder(1), Symbol::Builder('x'), Rational::Builder(2), Rational::Builder(2)).isParameteredExpression());
quiz_assert(Sum::Builder(Rational::Builder(1), Symbol::Builder('n'), Rational::Builder(2), Rational::Builder(2)).isParameteredExpression());
quiz_assert(Product::Builder(Rational::Builder(1), Symbol::Builder('n'), Rational::Builder(2), Rational::Builder(2)).isParameteredExpression());
quiz_assert(!Symbol::Builder('a').isParameteredExpression());
quiz_assert(!Rational::Builder(2,3).isParameteredExpression());
}
void assert_expression_has_property(const char * expression, Context * context, Expression::ExpressionTest test) {
Expression e = parse_expression(expression, context, false);
quiz_assert_print_if_failure(e.recursivelyMatches(test, context), expression);
}
void assert_expression_has_not_property(const char * expression, Context * context, Expression::ExpressionTest test) {
Expression e = parse_expression(expression, context, false);
quiz_assert_print_if_failure(!e.recursivelyMatches(test, context), expression);
}
QUIZ_CASE(poincare_properties_is_approximate) {
Shared::GlobalContext context;
assert_expression_has_property("3.4", &context, Expression::IsApproximate);
assert_expression_has_property("2.3+1", &context, Expression::IsApproximate);
assert_expression_has_not_property("a", &context, Expression::IsApproximate);
assert_reduce("42.3→a");
assert_expression_has_property("a", &context, Expression::IsApproximate);
Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy();
}
QUIZ_CASE(poincare_properties_is_matrix) {
Shared::GlobalContext context;
assert_expression_has_property("[[1,2][3,4]]", &context, Expression::IsMatrix);
assert_expression_has_property("confidence(0.2,3)*2", &context, Expression::IsMatrix);
assert_expression_has_property("dim([[1,2][3,4]])/3", &context, Expression::IsMatrix);
assert_expression_has_property("prediction(0.3,10)", &context, Expression::IsMatrix);
assert_expression_has_property("[[1,2][3,4]]^(-1)", &context, Expression::IsMatrix);
assert_expression_has_property("inverse([[1,2][3,4]])", &context, Expression::IsMatrix);
assert_expression_has_property("3*identity(4)", &context, Expression::IsMatrix);
assert_expression_has_property("transpose([[1,2][3,4]])", &context, Expression::IsMatrix);
assert_expression_has_property("ref([[1,2][3,4]])", &context, Expression::IsMatrix);
assert_expression_has_property("rref([[1,2][3,4]])", &context, Expression::IsMatrix);
assert_expression_has_property("cross([[1][2][3]],[[3][4][5]])", &context, Expression::IsMatrix);
assert_expression_has_not_property("2*3+1", &context, Expression::IsMatrix);
}
void assert_expression_is_deep_matrix(const char * expression) {
Shared::GlobalContext context;
Expression e = parse_expression(expression, &context, false);
quiz_assert_print_if_failure(e.deepIsMatrix(&context), expression);
}
void assert_expression_is_not_deep_matrix(const char * expression) {
Shared::GlobalContext context;
Expression e = parse_expression(expression, &context, false);
quiz_assert_print_if_failure(!e.deepIsMatrix(&context), expression);
}
QUIZ_CASE(poincare_properties_deep_is_matrix) {
assert_expression_is_not_deep_matrix("diff([[1,2][3,4]],x,2)");
assert_expression_is_not_deep_matrix("sign([[1,2][3,4]])");
assert_expression_is_not_deep_matrix("3");
assert_expression_is_deep_matrix("2*dim(2)");
assert_expression_is_deep_matrix("log(confidence(0.2,20))");
assert_expression_is_deep_matrix("confidence(0.2,20)^2");
assert_expression_is_deep_matrix("cos(confidence(0.2,20))");
}
QUIZ_CASE(poincare_properties_is_infinity) {
Shared::GlobalContext context;
assert_expression_has_property("3.4+inf", &context, Expression::IsInfinity);
assert_expression_has_not_property("2.3+1", &context, Expression::IsInfinity);
assert_expression_has_not_property("a", &context, Expression::IsInfinity);
assert_reduce("42.3+inf→a");
assert_expression_has_property("a", &context, Expression::IsInfinity);
Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy();
}
constexpr Poincare::ExpressionNode::Sign Positive = Poincare::ExpressionNode::Sign::Positive;
constexpr Poincare::ExpressionNode::Sign Negative = Poincare::ExpressionNode::Sign::Negative;
constexpr Poincare::ExpressionNode::Sign Unknown = Poincare::ExpressionNode::Sign::Unknown;
void assert_reduced_expression_sign(const char * expression, Poincare::ExpressionNode::Sign sign, Preferences::ComplexFormat complexFormat = Cartesian, Preferences::AngleUnit angleUnit = Radian, Preferences::UnitFormat unitFormat = Metric) {
Shared::GlobalContext globalContext;
Expression e = parse_expression(expression, &globalContext, false);
e = e.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, unitFormat, ExpressionNode::ReductionTarget::SystemForApproximation));
quiz_assert_print_if_failure(e.sign(&globalContext) == sign, expression);
}
QUIZ_CASE(poincare_properties_decimal_sign) {
quiz_assert(Decimal::Builder(-2, 3).sign() == ExpressionNode::Sign::Negative);
quiz_assert(Decimal::Builder(-2, -3).sign() == ExpressionNode::Sign::Negative);
quiz_assert(Decimal::Builder(2, -3).sign() == ExpressionNode::Sign::Positive);
quiz_assert(Decimal::Builder(2, 3).sign() == ExpressionNode::Sign::Positive);
quiz_assert(Decimal::Builder(0, 1).sign() == ExpressionNode::Sign::Positive);
}
QUIZ_CASE(poincare_properties_based_integer_sign) {
quiz_assert(BasedInteger::Builder(2, Integer::Base::Binary).sign() == ExpressionNode::Sign::Positive);
quiz_assert(BasedInteger::Builder(2, Integer::Base::Decimal).sign() == ExpressionNode::Sign::Positive);
quiz_assert(BasedInteger::Builder(2, Integer::Base::Hexadecimal).sign() == ExpressionNode::Sign::Positive);
}
QUIZ_CASE(poincare_properties_rational_sign) {
quiz_assert(Rational::Builder(-2).sign() == ExpressionNode::Sign::Negative);
quiz_assert(Rational::Builder(-2, 3).sign() == ExpressionNode::Sign::Negative);
quiz_assert(Rational::Builder(2, 3).sign() == ExpressionNode::Sign::Positive);
quiz_assert(Rational::Builder(0, 3).sign() == ExpressionNode::Sign::Positive);
}
QUIZ_CASE(poincare_properties_sign) {
assert_reduced_expression_sign("abs(-cos(2)+I)", Positive);
assert_reduced_expression_sign("2.345ᴇ-23", Positive);
assert_reduced_expression_sign("-2.345ᴇ-23", Negative);
assert_reduced_expression_sign("2×(-3)×abs(-32)", Negative);
assert_reduced_expression_sign("2×(-3)×abs(-32)×cos(3)", Unknown);
assert_reduced_expression_sign("x", Unknown);
assert_reduced_expression_sign("2^(-abs(3))", Positive);
assert_reduced_expression_sign("(-2)^4", Positive);
assert_reduced_expression_sign("(-2)^3", Negative);
assert_reduced_expression_sign("random()", Positive);
assert_reduced_expression_sign("42/3", Positive);
assert_reduced_expression_sign("-23/32", Negative);
assert_reduced_expression_sign("𝐢", Unknown);
assert_reduced_expression_sign("", Negative);
assert_reduced_expression_sign("π", Positive);
assert_reduced_expression_sign("", Positive);
assert_reduced_expression_sign("0", Positive);
assert_reduced_expression_sign("cos(π/2)", Positive);
assert_reduced_expression_sign("cos(90)", Positive, Cartesian, Degree);
assert_reduced_expression_sign("√(-1)", Unknown);
assert_reduced_expression_sign("√(-1)", Unknown, Real);
assert_reduced_expression_sign("sign(π)", Positive);
assert_reduced_expression_sign("sign(-π)", Negative);
assert_reduced_expression_sign("a", Unknown);
assert_reduce("42→a");
assert_reduced_expression_sign("a", Positive);
Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy();
}
void assert_expression_is_real(const char * expression) {
Shared::GlobalContext context;
// isReal can be call only on reduced expressions
Expression e = parse_expression(expression, &context, false).reduce(ExpressionNode::ReductionContext(&context, Cartesian, Radian, Metric, ExpressionNode::ReductionTarget::SystemForApproximation));
quiz_assert_print_if_failure(e.isReal(&context), expression);
}
void assert_expression_is_not_real(const char * expression) {
Shared::GlobalContext context;
// isReal can be call only on reduced expressions
Expression e = parse_expression(expression, &context, false).reduce(ExpressionNode::ReductionContext(&context, Cartesian, Radian, Metric, ExpressionNode::ReductionTarget::SystemForApproximation));
quiz_assert_print_if_failure(!e.isReal(&context), expression);
}
QUIZ_CASE(poincare_properties_is_real) {
assert_expression_is_real("atan(4)");
assert_expression_is_not_real("atan(𝐢)");
assert_expression_is_real("conj(4)");
assert_expression_is_not_real("conj(𝐢)");
assert_expression_is_real("sin(4)");
assert_expression_is_not_real("sin(𝐢)");
assert_expression_is_real("quo(2,3+a)");
assert_expression_is_real("sign(2)");
assert_expression_is_real("abs(2)");
assert_expression_is_not_real("abs([[1,2]])");
assert_expression_is_real("ceil(2)");
assert_expression_is_not_real("ceil([[1,2]])");
assert_expression_is_not_real("1+2+3+3×𝐢");
assert_expression_is_real("1+2+3+root(2,3)");
assert_expression_is_real("1×23×3×root(2,3)");
assert_expression_is_not_real("1×23×3×root(2,3)×3×𝐢");
assert_expression_is_not_real("1×23×3×[[1,2]]");
assert_expression_is_not_real("1×23×3×abs(confidence(cos(5)/25,3))");
assert_expression_is_real("π");
assert_expression_is_not_real("unreal");
assert_expression_is_not_real("undef");
assert_expression_is_real("2.3");
assert_expression_is_real("2^3.4");
assert_expression_is_real("(-2)^(-3)");
assert_expression_is_not_real("𝐢^3.4");
assert_expression_is_not_real("2^(3.4𝐢)");
assert_expression_is_not_real("(-2)^0.4");
}
void assert_reduced_expression_polynomial_degree(const char * expression, int degree, const char * symbolName = "x", Preferences::ComplexFormat complexFormat = Cartesian, Preferences::AngleUnit angleUnit = Radian, Preferences::UnitFormat unitFormat = Metric) {
Shared::GlobalContext globalContext;
Expression e = parse_expression(expression, &globalContext, false);
Expression result = e.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, unitFormat, SystemForApproximation));
quiz_assert_print_if_failure(result.polynomialDegree(&globalContext, symbolName) == degree, expression);
}
QUIZ_CASE(poincare_properties_polynomial_degree) {
assert_reduced_expression_polynomial_degree("x+1", 1);
assert_reduced_expression_polynomial_degree("cos(2)+1", 0);
assert_reduced_expression_polynomial_degree("confidence(0.2,10)+1", -1);
assert_reduced_expression_polynomial_degree("diff(3×x+x,x,2)", 0);
assert_reduced_expression_polynomial_degree("diff(3×x+x,x,x)", 0);
assert_reduced_expression_polynomial_degree("diff(3×x+x,x,x)", 0, "a");
assert_reduced_expression_polynomial_degree("(3×x+2)/3", 1);
assert_reduced_expression_polynomial_degree("(3×x+2)/x", -1);
assert_reduced_expression_polynomial_degree("int(2×x,x, 0, 1)", -1);
assert_reduced_expression_polynomial_degree("int(2×x,x, 0, 1)", 0, "a");
assert_reduced_expression_polynomial_degree("[[1,2][3,4]]", -1);
assert_reduced_expression_polynomial_degree("(x^2+2)×(x+1)", 3);
assert_reduced_expression_polynomial_degree("-(x+1)", 1);
assert_reduced_expression_polynomial_degree("(x^2+2)^(3)", 6);
assert_reduced_expression_polynomial_degree("prediction(0.2,10)+1", -1);
assert_reduced_expression_polynomial_degree("2-x-x^3", 3);
assert_reduced_expression_polynomial_degree("π×x", 1);
assert_reduced_expression_polynomial_degree("√(-1)×x", -1, "x", Real);
// f: x→x^2+πx+1
assert_reduce("1+π×x+x^2→f(x)");
assert_reduced_expression_polynomial_degree("f(x)", 2);
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
}
void assert_reduced_expression_has_characteristic_range(Expression e, float range, Preferences::AngleUnit angleUnit = Preferences::AngleUnit::Degree, Preferences::UnitFormat unitFormat = Metric) {
Shared::GlobalContext globalContext;
e = e.reduce(ExpressionNode::ReductionContext(&globalContext, Preferences::ComplexFormat::Cartesian, angleUnit, unitFormat, ExpressionNode::ReductionTarget::SystemForApproximation));
if (std::isnan(range)) {
quiz_assert(std::isnan(e.characteristicXRange(&globalContext, angleUnit)));
} else {
quiz_assert(std::fabs(e.characteristicXRange(&globalContext, angleUnit) - range) < 0.0000001f);
}
}
QUIZ_CASE(poincare_properties_characteristic_range) {
// cos(x), degree
assert_reduced_expression_has_characteristic_range(Cosine::Builder(Symbol::Builder(UCodePointUnknown)), 360.0f);
// cos(-x), degree
assert_reduced_expression_has_characteristic_range(Cosine::Builder(Opposite::Builder(Symbol::Builder(UCodePointUnknown))), 360.0f);
// cos(x), radian
assert_reduced_expression_has_characteristic_range(Cosine::Builder(Symbol::Builder(UCodePointUnknown)), 2.0f*M_PI, Preferences::AngleUnit::Radian);
// cos(-x), radian
assert_reduced_expression_has_characteristic_range(Cosine::Builder(Opposite::Builder(Symbol::Builder(UCodePointUnknown))), 2.0f*M_PI, Preferences::AngleUnit::Radian);
// sin(9x+10), degree
assert_reduced_expression_has_characteristic_range(Sine::Builder(Addition::Builder(Multiplication::Builder(Rational::Builder(9),Symbol::Builder(UCodePointUnknown)),Rational::Builder(10))), 40.0f);
// sin(9x+10)+cos(x/2), degree
assert_reduced_expression_has_characteristic_range(Addition::Builder(Sine::Builder(Addition::Builder(Multiplication::Builder(Rational::Builder(9),Symbol::Builder(UCodePointUnknown)),Rational::Builder(10))),Cosine::Builder(Division::Builder(Symbol::Builder(UCodePointUnknown),Rational::Builder(2)))), 720.0f);
// sin(9x+10)+cos(x/2), radian
assert_reduced_expression_has_characteristic_range(Addition::Builder(Sine::Builder(Addition::Builder(Multiplication::Builder(Rational::Builder(9),Symbol::Builder(UCodePointUnknown)),Rational::Builder(10))),Cosine::Builder(Division::Builder(Symbol::Builder(UCodePointUnknown),Rational::Builder(2)))), 4.0f*M_PI, Preferences::AngleUnit::Radian);
// x, degree
assert_reduced_expression_has_characteristic_range(Symbol::Builder(UCodePointUnknown), NAN);
// cos(3)+2, degree
assert_reduced_expression_has_characteristic_range(Addition::Builder(Cosine::Builder(Rational::Builder(3)),Rational::Builder(2)), 0.0f);
// log(cos(40x), degree
assert_reduced_expression_has_characteristic_range(CommonLogarithm::Builder(Cosine::Builder(Multiplication::Builder(Rational::Builder(40),Symbol::Builder(UCodePointUnknown)))), 9.0f);
// cos(cos(x)), degree
assert_reduced_expression_has_characteristic_range(Cosine::Builder((Expression)Cosine::Builder(Symbol::Builder(UCodePointUnknown))), 360.0f);
// f(x) with f : x --> cos(x), degree
assert_reduce("cos(x)→f(x)");
assert_reduced_expression_has_characteristic_range(Function::Builder("f",1,Symbol::Builder(UCodePointUnknown)), 360.0f);
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
}
void assert_expression_has_variables(const char * expression, const char * variables[], int trueNumberOfVariables) {
Shared::GlobalContext globalContext;
Expression e = parse_expression(expression, &globalContext, false);
constexpr static int k_maxVariableSize = Poincare::SymbolAbstract::k_maxNameSize;
char variableBuffer[Expression::k_maxNumberOfVariables][k_maxVariableSize] = {{0}};
int numberOfVariables = e.getVariables(&globalContext, [](const char * symbol, Poincare::Context * context) { return true; }, (char *)variableBuffer, k_maxVariableSize);
quiz_assert_print_if_failure(trueNumberOfVariables == numberOfVariables, expression);
if (numberOfVariables < 0) {
// Too many variables
return;
}
int index = 0;
while (index < Expression::k_maxNumberOfVariables && (variableBuffer[index][0] != 0 || variables[index][0] != 0)) {
quiz_assert_print_if_failure(strcmp(variableBuffer[index], variables[index]) == 0, expression);
index++;
}
}
QUIZ_CASE(poincare_properties_get_variables) {
const char * variableBuffer1[] = {"x","y",""};
assert_expression_has_variables("x+y", variableBuffer1, 2);
const char * variableBuffer2[] = {"x","y","z","t",""};
assert_expression_has_variables("x+y+z+2×t", variableBuffer2, 4);
const char * variableBuffer3[] = {"a","x","y","k","A", ""};
assert_expression_has_variables("a+x^2+2×y+k!×A", variableBuffer3, 5);
const char * variableBuffer4[] = {"BABA","abab", ""};
assert_expression_has_variables("BABA+abab", variableBuffer4, 2);
const char * variableBuffer5[] = {"BBBBBB", ""};
assert_expression_has_variables("BBBBBB", variableBuffer5, 1);
const char * variableBuffer6[] = {""};
assert_expression_has_variables("a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+aa+bb+cc+dd+ee+ff+gg+hh+ii+jj+kk+ll+mm+nn+oo", variableBuffer6, -1);
assert_expression_has_variables("a+b+c+d+e+f+g", variableBuffer6, -1);
// f: x→1+πx+x^2+toto
assert_reduce("1+π×x+x^2+toto→f(x)");
const char * variableBuffer7[] = {"tata","toto", ""};
assert_expression_has_variables("f(tata)", variableBuffer7, 2);
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
const char * variableBuffer8[] = {"y", ""};
assert_expression_has_variables("diff(3x,x,0)y-2", variableBuffer8, 1);
const char * variableBuffer9[] = {"a", "b", "c", "d", "e", "f"};
assert_expression_has_variables("a+b+c+d+e+f", variableBuffer9, 6);
}
void assert_reduced_expression_has_polynomial_coefficient(const char * expression, const char * symbolName, const char ** coefficients, Preferences::ComplexFormat complexFormat = Cartesian, Preferences::AngleUnit angleUnit = Radian, Preferences::UnitFormat unitFormat = Metric, ExpressionNode::SymbolicComputation symbolicComputation = ReplaceAllDefinedSymbolsWithDefinition) {
Shared::GlobalContext globalContext;
Expression e = parse_expression(expression, &globalContext, false);
e = e.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, unitFormat, SystemForAnalysis, symbolicComputation));
Expression coefficientBuffer[Poincare::Expression::k_maxNumberOfPolynomialCoefficients];
int d = e.getPolynomialReducedCoefficients(symbolName, coefficientBuffer, &globalContext, complexFormat, Radian, unitFormat, symbolicComputation);
for (int i = 0; i <= d; i++) {
Expression f = parse_expression(coefficients[i], &globalContext, false);
coefficientBuffer[i] = coefficientBuffer[i].reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, unitFormat, SystemForAnalysis, symbolicComputation));
f = f.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, unitFormat, SystemForAnalysis, symbolicComputation));
quiz_assert_print_if_failure(coefficientBuffer[i].isIdenticalTo(f), expression);
}
quiz_assert_print_if_failure(coefficients[d+1] == 0, expression);
}
QUIZ_CASE(poincare_properties_get_polynomial_coefficients) {
const char * coefficient0[] = {"2", "1", "1", 0};
assert_reduced_expression_has_polynomial_coefficient("x^2+x+2", "x", coefficient0);
const char * coefficient1[] = {"12+(-6)×π", "12", "3", 0}; //3×x^2+12×x-6×π+12
assert_reduced_expression_has_polynomial_coefficient("3×(x+2)^2-6×π", "x", coefficient1);
// TODO: decomment when enable 3-degree polynomes
//const char * coefficient2[] = {"2+32×x", "2", "6", "2", 0}; //2×n^3+6×n^2+2×n+2+32×x
//assert_reduced_expression_has_polynomial_coefficient("2×(n+1)^3-4n+32×x", "n", coefficient2);
const char * coefficient3[] = {"1", "", "1", 0}; //x^2-π×x+1
assert_reduced_expression_has_polynomial_coefficient("x^2-π×x+1", "x", coefficient3);
// f: x→x^2+Px+1
assert_reduce("1+π×x+x^2→f(x)");
const char * coefficient4[] = {"1", "π", "1", 0}; //x^2+π×x+1
assert_reduced_expression_has_polynomial_coefficient("f(x)", "x", coefficient4);
const char * coefficient5[] = {"0", "𝐢", 0}; //√(-1)x
assert_reduced_expression_has_polynomial_coefficient("√(-1)x", "x", coefficient5);
const char * coefficient6[] = {0}; //√(-1)x
assert_reduced_expression_has_polynomial_coefficient("√(-1)x", "x", coefficient6, Real);
// 3 -> x
assert_reduce("3→x");
const char * coefficient7[] = {"4", 0};
assert_reduced_expression_has_polynomial_coefficient("x+1", "x", coefficient7 );
const char * coefficient8[] = {"2", "1", 0};
assert_reduced_expression_has_polynomial_coefficient("x+2", "x", coefficient8, Real, Radian, Metric, DoNotReplaceAnySymbol);
assert_reduced_expression_has_polynomial_coefficient("x+2", "x", coefficient8, Real, Radian, Metric, ReplaceDefinedFunctionsWithDefinitions);
assert_reduced_expression_has_polynomial_coefficient("f(x)", "x", coefficient4, Cartesian, Radian, Metric, ReplaceDefinedFunctionsWithDefinitions);
// Clear the storage
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
Ion::Storage::sharedStorage()->recordNamed("x.exp").destroy();
}
void assert_reduced_expression_unit_is(const char * expression, const char * unit) {
Shared::GlobalContext globalContext;
ExpressionNode::ReductionContext redContext(&globalContext, Real, Degree, Metric, SystemForApproximation);
Expression e = parse_expression(expression, &globalContext, false);
e = e.reduce(redContext);
Expression u1;
e = e.removeUnit(&u1);
Expression e2 = parse_expression(unit, &globalContext, false);
Expression u2;
e2 = e2.reduce(redContext);
e2.removeUnit(&u2);
quiz_assert_print_if_failure(u1.isUninitialized() == u2.isUninitialized() && (u1.isUninitialized() || u1.isIdenticalTo(u2)), expression);
}
QUIZ_CASE(poincare_properties_remove_unit) {
assert_reduced_expression_unit_is("_km", "_m");
assert_reduced_expression_unit_is("_min/_km", "_m^(-1)×_s");
assert_reduced_expression_unit_is("_km^3", "_m^3");
assert_reduced_expression_unit_is("1_m+_km", "_m");
assert_reduced_expression_unit_is("_L^2×3×_s", "_m^6×_s");
}
void assert_additional_results_compute_to(const char * expression, const char * * results, int length) {
Shared::GlobalContext globalContext;
constexpr int maxNumberOfResults = 5;
assert(length <= maxNumberOfResults);
Expression additional[maxNumberOfResults];
ExpressionNode::ReductionContext reductionContext = ExpressionNode::ReductionContext(&globalContext, Cartesian, Degree, Metric, User, ReplaceAllSymbolsWithUndefined, DefaultUnitConversion);
Expression e = parse_expression(expression, &globalContext, false).reduce(reductionContext);
Expression units;
e = e.removeUnit(&units);
double value = e.approximateToScalar<double>(&globalContext, Cartesian, Degree);
if (!Unit::ShouldDisplayAdditionalOutputs(value, units)) {
quiz_assert(length == 0);
return;
}
const int numberOfResults = Unit::SetAdditionalExpressions(units, value, additional, maxNumberOfResults, reductionContext);
quiz_assert(numberOfResults == length);
for (int i = 0; i < length; i++) {
assert_expression_serialize_to(additional[i], results[i], Preferences::PrintFloatMode::Decimal);
}
}
QUIZ_CASE(poincare_expression_additional_results) {
// Time
assert_additional_results_compute_to("3×_s", nullptr, 0);
const char * array1[1] = {"1×_min+1×_s"};
assert_additional_results_compute_to("61×_s", array1, 1);
const char * array2[1] = {"1×_day+10×_h+17×_min+36×_s"};
assert_additional_results_compute_to("123456×_s", array2, 1);
const char * array3[1] = {"7×_day"};
assert_additional_results_compute_to("1×_week", array3, 1);
// Distance
const char * array4[1] = {"19×_mi+853×_yd+1×_ft+7×_in"};
assert_additional_results_compute_to("1234567×_in", array4, 1);
const char * array5[1] = {"1×_yd+7.700787×_in"};
assert_additional_results_compute_to("1.11×_m", array5, 1);
// Masses
const char * array6[1] = {"1×_shtn+240×_lb"};
assert_additional_results_compute_to("1×_lgtn", array6, 1);
const char * array7[1] = {"2×_lb+3.273962×_oz"};
assert_additional_results_compute_to("1×_kg", array7, 1);
// Energy
const char * array8[2] = {"1×_kW×_h", "2.246943ᴇ13×_TeV"};
assert_additional_results_compute_to("3.6×_MN_m", array8, 2);
// Volume
const char * array9[2] = {"1000×_L", "264×_gal+2×_cp+6.022702×_floz"};
assert_additional_results_compute_to("1×_m^3", array9, 2);
const char * array10[2] = {"182.5426×_L", "48×_gal+3×_cp+4.5×_floz"};
assert_additional_results_compute_to("12345×_Tbsp", array10, 2);
// Speed
const char * array11[2] = {"3.6×_km×_h^\x12-1\x13", "2.236936×_mi×_h^\x12-1\x13"};
assert_additional_results_compute_to("1×_m/_s", array11, 2);
}