Files
Upsilon/apps/probability/distribution/distribution.cpp
Léa Saviot 5c70fdc7a6 [apps/probability] Handle a == b case in finite integral computation
For non continuous distributions, P(a <= X <= a) is not necessarily
null.
2020-03-16 11:40:40 +01:00

148 lines
5.3 KiB
C++

#include "distribution.h"
#include <poincare/solver.h>
#include <cmath>
#include <float.h>
namespace Probability {
double Distribution::cumulativeDistributiveFunctionAtAbscissa(double x) const {
if (!isContinuous()) {
return Poincare::Solver::CumulativeDistributiveFunctionForNDefinedFunction<double>(x,
[](double k, Poincare::Context * context, Poincare::Preferences::ComplexFormat complexFormat, Poincare::Preferences::AngleUnit angleUnit, const void * context1, const void * context2, const void * context3) {
const Distribution * distribution = reinterpret_cast<const Distribution *>(context1);
return distribution->evaluateAtDiscreteAbscissa(k);
}, nullptr, Poincare::Preferences::ComplexFormat::Real, Poincare::Preferences::AngleUnit::Degree, this);
// Context, complex format and angle unit are dummy values
}
return 0.0;
}
double Distribution::rightIntegralFromAbscissa(double x) const {
if (isContinuous()) {
return 1.0 - cumulativeDistributiveFunctionAtAbscissa(x);
}
return 1.0 - cumulativeDistributiveFunctionAtAbscissa(x-1.0);
}
double Distribution::finiteIntegralBetweenAbscissas(double a, double b) const {
if (b < a) {
return 0.0;
}
if (a == b) {
return evaluateAtDiscreteAbscissa(a);
}
if (isContinuous()) {
return cumulativeDistributiveFunctionAtAbscissa(b) - cumulativeDistributiveFunctionAtAbscissa(a);
}
int start = std::round(a);
int end = std::round(b);
double result = 0.0;
for (int k = start; k <=end; k++) {
result += evaluateAtDiscreteAbscissa(k);
/* Avoid too long loop */
if (k-start > k_maxNumberOfOperations) {
break;
}
if (result >= k_maxProbability) {
result = 1.0;
break;
}
}
return result;
}
double Distribution::cumulativeDistributiveInverseForProbability(double * probability) {
if (*probability > 1.0 - DBL_EPSILON) {
return INFINITY;
}
if (isContinuous()) {
return 0.0;
}
if (*probability < DBL_EPSILON) {
return -1.0;
}
return Poincare::Solver::CumulativeDistributiveInverseForNDefinedFunction<double>(probability,
[](double k, Poincare::Context * context, Poincare::Preferences::ComplexFormat complexFormat, Poincare::Preferences::AngleUnit angleUnit, const void * context1, const void * context2, const void * context3) {
const Distribution * distribution = reinterpret_cast<const Distribution *>(context1);
return distribution->evaluateAtDiscreteAbscissa(k);
}, nullptr, Poincare::Preferences::ComplexFormat::Real, Poincare::Preferences::AngleUnit::Degree, this);
// Context, complex format and angle unit are dummy values
}
double Distribution::rightIntegralInverseForProbability(double * probability) {
if (isContinuous()) {
double f = 1.0 - *probability;
return cumulativeDistributiveInverseForProbability(&f);
}
if (*probability >= 1.0) {
return 0.0;
}
if (*probability <= 0.0) {
return INFINITY;
}
double p = 0.0;
int k = 0;
double delta = 0.0;
do {
delta = std::fabs(1.0-*probability-p);
p += evaluateAtDiscreteAbscissa(k++);
if (p >= k_maxProbability && std::fabs(1.0-*probability-p) <= delta) {
*probability = 0.0;
return k;
}
} while (std::fabs(1.0-*probability-p) <= delta && k < k_maxNumberOfOperations);
if (k == k_maxNumberOfOperations) {
*probability = 1.0;
return INFINITY;
}
*probability = 1.0 - (p - evaluateAtDiscreteAbscissa(k-1));
if (std::isnan(*probability)) {
return NAN;
}
return k-1.0;
}
double Distribution::evaluateAtDiscreteAbscissa(int k) const {
return 0.0;
}
double Distribution::cumulativeDistributiveInverseForProbabilityUsingIncreasingFunctionRoot(double * probability, double ax, double bx) {
assert(ax < bx);
if (*probability > 1.0 - DBL_EPSILON) {
return INFINITY;
}
if (*probability < DBL_EPSILON) {
return -INFINITY;
}
Poincare::Coordinate2D<double> result = Poincare::Solver::IncreasingFunctionRoot(
ax,
bx,
DBL_EPSILON,
[](double x, Poincare::Context * context, Poincare::Preferences::ComplexFormat complexFormat, Poincare::Preferences::AngleUnit angleUnit, const void * context1, const void * context2, const void * context3) {
const Distribution * distribution = reinterpret_cast<const Distribution *>(context1);
const double * proba = reinterpret_cast<const double *>(context2);
return distribution->cumulativeDistributiveFunctionAtAbscissa(x) - *proba; // This needs to be an increasing function
},
nullptr,
Poincare::Preferences::sharedPreferences()->complexFormat(),
Poincare::Preferences::sharedPreferences()->angleUnit(),
this,
probability,
nullptr);
/* Either no result was found, the precision is ok or the result was outside
* the given ax bx bounds */
if (!(std::isnan(result.x2()) || std::fabs(result.x2()) <= FLT_EPSILON || std::fabs(result.x1()- ax) < FLT_EPSILON || std::fabs(result.x1() - bx) < FLT_EPSILON)) {
/* TODO We would like to put this as an assertion, but sometimes we do get
* false result: we replace them with inf to make the problem obvisous to
* the student. */
return *probability > 0.5 ? INFINITY : -INFINITY;
}
return result.x1();
}
float Distribution::yMin() const {
return -k_displayBottomMarginRatio * yMax();
}
}