mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 00:37:25 +01:00
356 lines
12 KiB
C++
356 lines
12 KiB
C++
#include "cartesian_function.h"
|
|
#include <float.h>
|
|
#include <cmath>
|
|
|
|
using namespace Poincare;
|
|
|
|
namespace Graph {
|
|
|
|
CartesianFunction::CartesianFunction(const char * text, KDColor color) :
|
|
Shared::Function(text, color),
|
|
m_displayDerivative(false)
|
|
{
|
|
}
|
|
|
|
bool CartesianFunction::displayDerivative() {
|
|
return m_displayDerivative;
|
|
}
|
|
|
|
void CartesianFunction::setDisplayDerivative(bool display) {
|
|
m_displayDerivative = display;
|
|
}
|
|
|
|
double CartesianFunction::approximateDerivative(double x, Poincare::Context * context) const {
|
|
Poincare::Complex<double> abscissa = Poincare::Complex<double>::Float(x);
|
|
Poincare::Expression * args[2] = {expression(context), &abscissa};
|
|
Poincare::Derivative derivative(args, true);
|
|
/* TODO: when we will simplify derivative, we might want to simplify the
|
|
* derivative here. However, we might want to do it once for all x (to avoid
|
|
* lagging in the derivative table. */
|
|
return derivative.approximateToScalar<double>(*context);
|
|
}
|
|
|
|
double CartesianFunction::sumBetweenBounds(double start, double end, Poincare::Context * context) const {
|
|
Poincare::Complex<double> x = Poincare::Complex<double>::Float(start);
|
|
Poincare::Complex<double> y = Poincare::Complex<double>::Float(end);
|
|
Poincare::Expression * args[3] = {expression(context), &x, &y};
|
|
Poincare::Integral integral(args, true);
|
|
/* TODO: when we will simplify integral, we might want to simplify the
|
|
* integral here. However, we might want to do it once for all x (to avoid
|
|
* lagging in the derivative table. */
|
|
return integral.approximateToScalar<double>(*context);
|
|
}
|
|
|
|
CartesianFunction::Point CartesianFunction::nextMinimumFrom(double start, double step, double max, Context * context) const {
|
|
return nextMinimumOfFunction(start, step, max, [](double x, Context * context, const Shared::Function * function0, const Shared::Function * function1 = nullptr) {
|
|
return function0->evaluateAtAbscissa(x, context);
|
|
}, context);
|
|
}
|
|
|
|
CartesianFunction::Point CartesianFunction::nextMaximumFrom(double start, double step, double max, Context * context) const {
|
|
Point minimumOfOpposite = nextMinimumOfFunction(start, step, max, [](double x, Context * context, const Shared::Function * function0, const Shared::Function * function1 = nullptr) {
|
|
return -function0->evaluateAtAbscissa(x, context);
|
|
}, context);
|
|
return {.abscissa = minimumOfOpposite.abscissa, .value = -minimumOfOpposite.value};
|
|
}
|
|
|
|
double CartesianFunction::nextRootFrom(double start, double step, double max, Context * context) const {
|
|
return nextIntersectionWithFunction(start, step, max, [](double x, Context * context, const Shared::Function * function0, const Shared::Function * function1 = nullptr) {
|
|
return function0->evaluateAtAbscissa(x, context);
|
|
}, context, nullptr);
|
|
}
|
|
|
|
CartesianFunction::Point CartesianFunction::nextIntersectionFrom(double start, double step, double max, Poincare::Context * context, const Shared::Function * function) const {
|
|
double resultAbscissa = nextIntersectionWithFunction(start, step, max, [](double x, Context * context, const Shared::Function * function0, const Shared::Function * function1) {
|
|
return function0->evaluateAtAbscissa(x, context)-function1->evaluateAtAbscissa(x, context);
|
|
}, context, function);
|
|
CartesianFunction::Point result = {.abscissa = resultAbscissa, .value = evaluateAtAbscissa(resultAbscissa, context)};
|
|
if (std::fabs(result.value) < step*k_precision) {
|
|
result.value = 0.0;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
CartesianFunction::Point CartesianFunction::nextMinimumOfFunction(double start, double step, double max, Evaluation evaluate, Context * context, const Shared::Function * function, bool lookForRootMinimum) const {
|
|
double bracket[3];
|
|
Point result = {.abscissa = NAN, .value = NAN};
|
|
double x = start;
|
|
bool endCondition = false;
|
|
do {
|
|
bracketMinimum(x, step, max, bracket, evaluate, context, function);
|
|
result = brentMinimum(bracket[0], bracket[2], evaluate, context, function);
|
|
x = bracket[1];
|
|
endCondition = std::isnan(result.abscissa) && (step > 0.0 ? x <= max : x >= max);
|
|
if (lookForRootMinimum) {
|
|
endCondition |= std::fabs(result.value) >= k_sqrtEps && (step > 0.0 ? x <= max : x >= max);
|
|
}
|
|
} while (endCondition);
|
|
|
|
if (std::fabs(result.abscissa) < step*k_precision) {
|
|
result.abscissa = 0;
|
|
result.value = evaluate(0, context, this, function);
|
|
}
|
|
if (std::fabs(result.value) < step*k_precision) {
|
|
result.value = 0;
|
|
}
|
|
if (lookForRootMinimum) {
|
|
result.abscissa = std::fabs(result.value) >= k_sqrtEps ? NAN : result.abscissa;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void CartesianFunction::bracketMinimum(double start, double step, double max, double result[3], Evaluation evaluate, Context * context, const Shared::Function * function) const {
|
|
Point p[3];
|
|
p[0] = {.abscissa = start, .value = evaluate(start, context, this, function)};
|
|
p[1] = {.abscissa = start+step, .value = evaluate(start+step, context, this, function)};
|
|
double x = start+2.0*step;
|
|
while (step > 0.0 ? x <= max : x >= max) {
|
|
p[2] = {.abscissa = x, .value = evaluate(x, context, this, function)};
|
|
if (p[0].value > p[1].value && p[2].value > p[1].value) {
|
|
result[0] = p[0].abscissa;
|
|
result[1] = p[1].abscissa;
|
|
result[2] = p[2].abscissa;
|
|
return;
|
|
}
|
|
if (p[0].value > p[1].value && p[1].value == p[2].value) {
|
|
} else {
|
|
p[0] = p[1];
|
|
p[1] = p[2];
|
|
}
|
|
x += step;
|
|
}
|
|
result[0] = NAN;
|
|
result[1] = NAN;
|
|
result[2] = NAN;
|
|
}
|
|
|
|
char CartesianFunction::symbol() const {
|
|
return 'x';
|
|
}
|
|
|
|
CartesianFunction::Point CartesianFunction::brentMinimum(double ax, double bx, Evaluation evaluate, Context * context, const Shared::Function * function) const {
|
|
/* Bibliography: R. P. Brent, Algorithms for finding zeros and extrema of
|
|
* functions without calculating derivatives */
|
|
if (ax > bx) {
|
|
return brentMinimum(bx, ax, evaluate, context, function);
|
|
}
|
|
double e = 0.0;
|
|
double a = ax;
|
|
double b = bx;
|
|
double x = a+k_goldenRatio*(b-a);
|
|
double v = x;
|
|
double w = x;
|
|
double fx = evaluate(x, context, this, function);
|
|
double fw = fx;
|
|
double fv = fw;
|
|
|
|
double d = NAN;
|
|
double u, fu;
|
|
|
|
for (int i = 0; i < 100; i++) {
|
|
double m = 0.5*(a+b);
|
|
double tol1 = k_sqrtEps*std::fabs(x)+1E-10;
|
|
double tol2 = 2.0*tol1;
|
|
if (std::fabs(x-m) <= tol2-0.5*(b-a)) {
|
|
double middleFax = evaluate((x+a)/2.0, context, this, function);
|
|
double middleFbx = evaluate((x+b)/2.0, context, this, function);
|
|
double fa = evaluate(a, context, this, function);
|
|
double fb = evaluate(b, context, this, function);
|
|
if (middleFax-fa <= k_sqrtEps && fx-middleFax <= k_sqrtEps && fx-middleFbx <= k_sqrtEps && middleFbx-fb <= k_sqrtEps) {
|
|
Point result = {.abscissa = x, .value = fx};
|
|
return result;
|
|
}
|
|
}
|
|
double p = 0;
|
|
double q = 0;
|
|
double r = 0;
|
|
if (std::fabs(e) > tol1) {
|
|
r = (x-w)*(fx-fv);
|
|
q = (x-v)*(fx-fw);
|
|
p = (x-v)*q -(x-w)*r;
|
|
q = 2.0*(q-r);
|
|
if (q>0.0) {
|
|
p = -p;
|
|
} else {
|
|
q = -q;
|
|
}
|
|
r = e;
|
|
e = d;
|
|
}
|
|
if (std::fabs(p) < std::fabs(0.5*q*r) && p<q*(a-x) && p<q*(b-x)) {
|
|
d = p/q;
|
|
u= x+d;
|
|
if (u-a < tol2 || b-u < tol2) {
|
|
d = x < m ? tol1 : -tol1;
|
|
}
|
|
} else {
|
|
e = x<m ? b-x : a-x;
|
|
d = k_goldenRatio*e;
|
|
}
|
|
u = x + (std::fabs(d) >= tol1 ? d : (d>0 ? tol1 : -tol1));
|
|
fu = evaluate(u, context, this, function);
|
|
if (fu <= fx) {
|
|
if (u<x) {
|
|
b = x;
|
|
} else {
|
|
a = x;
|
|
}
|
|
v = w;
|
|
fv = fw;
|
|
w = x;
|
|
fw = fx;
|
|
x = u;
|
|
fx = fu;
|
|
} else {
|
|
if (u<x) {
|
|
a = u;
|
|
} else {
|
|
b = u;
|
|
}
|
|
if (fu <= fw || w == x) {
|
|
v = w;
|
|
fv = fw;
|
|
w = u;
|
|
fw = fu;
|
|
} else if (fu <= fv || v == x || v == w) {
|
|
v = u;
|
|
fv = fu;
|
|
}
|
|
}
|
|
}
|
|
Point result = {.abscissa = NAN, .value = NAN};
|
|
return result;
|
|
}
|
|
|
|
double CartesianFunction::nextIntersectionWithFunction(double start, double step, double max, Evaluation evaluation, Context * context, const Shared::Function * function) const {
|
|
double bracket[2];
|
|
double result = NAN;
|
|
static double precisionByGradUnit = 1E6;
|
|
double x = start+step;
|
|
do {
|
|
bracketRoot(x, step, max, bracket, evaluation, context, function);
|
|
result = brentRoot(bracket[0], bracket[1], std::fabs(step/precisionByGradUnit), evaluation, context, function);
|
|
x = bracket[1];
|
|
} while (std::isnan(result) && (step > 0.0 ? x <= max : x >= max));
|
|
|
|
double extremumMax = std::isnan(result) ? max : result;
|
|
Point resultExtremum[2] = {
|
|
nextMinimumOfFunction(start, step, extremumMax, [](double x, Context * context, const Shared::Function * function0, const Shared::Function * function1) {
|
|
if (function1) {
|
|
return function0->evaluateAtAbscissa(x, context)-function1->evaluateAtAbscissa(x, context);
|
|
} else {
|
|
return function0->evaluateAtAbscissa(x, context);
|
|
}
|
|
}, context, function, true),
|
|
nextMinimumOfFunction(start, step, extremumMax, [](double x, Context * context, const Shared::Function * function0, const Shared::Function * function1) {
|
|
if (function1) {
|
|
return function1->evaluateAtAbscissa(x, context)-function0->evaluateAtAbscissa(x, context);
|
|
} else {
|
|
return -function0->evaluateAtAbscissa(x, context);
|
|
}
|
|
}, context, function, true)};
|
|
for (int i = 0; i < 2; i++) {
|
|
if (!std::isnan(resultExtremum[i].abscissa) && (std::isnan(result) || std::fabs(result - start) > std::fabs(resultExtremum[i].abscissa - start))) {
|
|
result = resultExtremum[i].abscissa;
|
|
}
|
|
}
|
|
if (std::fabs(result) < step*k_precision) {
|
|
result = 0;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void CartesianFunction::bracketRoot(double start, double step, double max, double result[2], Evaluation evaluation, Context * context, const Shared::Function * function) const {
|
|
double a = start;
|
|
double b = start+step;
|
|
while (step > 0.0 ? b <= max : b >= max) {
|
|
double fa = evaluation(a, context, this, function);
|
|
double fb = evaluation(b, context, this, function);
|
|
if (fa*fb <= 0) {
|
|
result[0] = a;
|
|
result[1] = b;
|
|
return;
|
|
}
|
|
a = b;
|
|
b = b+step;
|
|
}
|
|
result[0] = NAN;
|
|
result[1] = NAN;
|
|
}
|
|
|
|
|
|
double CartesianFunction::brentRoot(double ax, double bx, double precision, Evaluation evaluation, Poincare::Context * context, const Shared::Function * function) const {
|
|
if (ax > bx) {
|
|
return brentRoot(bx, ax, precision, evaluation, context, function);
|
|
}
|
|
double a = ax;
|
|
double b = bx;
|
|
double c = bx;
|
|
double d = b-a;
|
|
double e = b-a;
|
|
double fa = evaluation(a, context, this, function);
|
|
double fb = evaluation(b, context, this, function);
|
|
double fc = fb;
|
|
for (int i = 0; i < 100; i++) {
|
|
if ((fb > 0.0 && fc > 0.0) || (fb < 0.0 && fc < 0.0)) {
|
|
c = a;
|
|
fc = fa;
|
|
e = b-a;
|
|
d = b-a;
|
|
}
|
|
if (std::fabs(fc) < std::fabs(fb)) {
|
|
a = b;
|
|
b = c;
|
|
c = a;
|
|
fa = fb;
|
|
fb = fc;
|
|
fc = fa;
|
|
}
|
|
double tol1 = 2.0*DBL_EPSILON*std::fabs(b)+0.5*precision;
|
|
double xm = 0.5*(c-b);
|
|
if (std::fabs(xm) <= tol1 || fb == 0.0) {
|
|
double fbcMiddle = evaluation(0.5*(b+c), context, this, function);
|
|
double isContinuous = (fb <= fbcMiddle && fbcMiddle <= fc) || (fc <= fbcMiddle && fbcMiddle <= fb);
|
|
if (isContinuous) {
|
|
return b;
|
|
}
|
|
}
|
|
if (std::fabs(e) >= tol1 && std::fabs(fa) > std::fabs(b)) {
|
|
double s = fb/fa;
|
|
double p = 2.0*xm*s;
|
|
double q = 1.0-s;
|
|
if (a != c) {
|
|
q = fa/fc;
|
|
double r = fb/fc;
|
|
p = s*(2.0*xm*q*(q-r)-(b-a)*(r-1.0));
|
|
q = (q-1.0)*(r-1.0)*(s-1.0);
|
|
}
|
|
q = p > 0.0 ? -q : q;
|
|
p = std::fabs(p);
|
|
double min1 = 3.0*xm*q-std::fabs(tol1*q);
|
|
double min2 = std::fabs(e*q);
|
|
if (2.0*p < (min1 < min2 ? min1 : min2)) {
|
|
e = d;
|
|
d = p/q;
|
|
} else {
|
|
d = xm;
|
|
e =d;
|
|
}
|
|
} else {
|
|
d = xm;
|
|
e = d;
|
|
}
|
|
a = b;
|
|
fa = fb;
|
|
if (std::fabs(d) > tol1) {
|
|
b += d;
|
|
} else {
|
|
b += xm > 0.0 ? tol1 : tol1;
|
|
}
|
|
fb = evaluation(b, context, this, function);
|
|
}
|
|
return NAN;
|
|
}
|
|
|
|
}
|