Files
Upsilon/apps/solver/test/equation_store.cpp
2018-11-23 12:03:58 +01:00

160 lines
7.4 KiB
C++

#include <quiz.h>
#include <poincare/global_context.h>
#include <string.h>
#include <assert.h>
#include <limits.h>
#include <cmath>
#include "../equation_store.h"
#include "../../../poincare/test/helper.h"
using namespace Poincare;
namespace Solver {
void assert_equation_system_exact_solve_to(const char * equations[], EquationStore::Error error, EquationStore::Type type, const char * variables[], const char * solutions[], int numberOfSolutions) {
char buffer[200];
GlobalContext globalContext;
EquationStore equationStore;
int index = 0;
while (equations[index] != 0) {
Shared::ExpressionModel * e = equationStore.addEmptyModel();
strlcpy(buffer, equations[index++], 200);
translate_in_special_chars(buffer);
e->setContent(buffer);
}
EquationStore::Error err = equationStore.exactSolve(&globalContext);
quiz_assert(err == error);
if (err != EquationStore::Error::NoError) {
return;
}
quiz_assert(equationStore.type() == type);
quiz_assert(equationStore.numberOfSolutions() == numberOfSolutions);
if (numberOfSolutions == INT_MAX) {
return;
}
if (type == EquationStore::Type::LinearSystem) {
for (int i = 0; i < numberOfSolutions; i++) {
quiz_assert(strcmp(equationStore.variableAtIndex(i),variables[i]) == 0);
}
} else {
quiz_assert(strcmp(equationStore.variableAtIndex(0), variables[0]) == 0);
}
int n = type == EquationStore::Type::PolynomialMonovariable ? numberOfSolutions+1 : numberOfSolutions; // Check Delta for PolynomialMonovariable
for (int i = 0; i < n; i++) {
equationStore.exactSolutionLayoutAtIndex(i, true).serialize(buffer, 200);
translate_in_ASCII_chars(buffer);
quiz_assert(strcmp(buffer, solutions[i]) == 0);
}
}
void assert_equation_approximate_solve_to(const char * equations, double xMin, double xMax, const char * variable, double solutions[], int numberOfSolutions, bool hasMoreSolutions) {
char buffer[200];
GlobalContext globalContext;
EquationStore equationStore;
Shared::ExpressionModel * e = equationStore.addEmptyModel();
strlcpy(buffer, equations, 200);
translate_in_special_chars(buffer);
e->setContent(buffer);
EquationStore::Error err = equationStore.exactSolve(&globalContext);
quiz_assert(err == EquationStore::Error::RequireApproximateSolution);
equationStore.setIntervalBound(0, xMin);
equationStore.setIntervalBound(1, xMax);
equationStore.approximateSolve(&globalContext);
quiz_assert(equationStore.numberOfSolutions() == numberOfSolutions);
quiz_assert(strcmp(equationStore.variableAtIndex(0), variable)== 0);
for (int i = 0; i < numberOfSolutions; i++) {
quiz_assert(std::fabs(equationStore.approximateSolutionAtIndex(i) - solutions[i]) < 1E-5);
}
quiz_assert(equationStore.haveMoreApproximationSolutions(&globalContext) == hasMoreSolutions);
}
QUIZ_CASE(equation_solve) {
// x+y+z+a+b+c+d = 0
const char * equations0[] = {"x+y+z+a+b+c+d=0", 0};
assert_equation_system_exact_solve_to(equations0, EquationStore::Error::TooManyVariables, EquationStore::Type::LinearSystem, {""}, nullptr, 0);
// x+y+z+a+b+c+d = 0
const char * equations01[] = {"tototototot=0", 0};
assert_equation_system_exact_solve_to(equations0, EquationStore::Error::VariableNameTooLong, EquationStore::Type::VariableNameTooLong, {""}, nullptr, 0);
// x^2+y = 0
const char * equations1[] = {"x^2+y=0", 0};
assert_equation_system_exact_solve_to(equations1, EquationStore::Error::NonLinearSystem, EquationStore::Type::LinearSystem, {""}, nullptr, 0);
// cos(x) = 0
const char * equations2[] = {"cos(x)=0", 0};
assert_equation_system_exact_solve_to(equations2, EquationStore::Error::RequireApproximateSolution, EquationStore::Type::LinearSystem, {""}, nullptr, 0);
// 2 = 0
const char * equations3[] = {"2=0", 0};
assert_equation_system_exact_solve_to(equations3, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, {""}, nullptr, 0);
// 0 = 0
const char * equations4[] = {"0=0", 0};
assert_equation_system_exact_solve_to(equations4, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, {""}, nullptr, INT_MAX);
// x-x+2 = 0
const char * equations5[] = {"x-x+2=0", 0};
assert_equation_system_exact_solve_to(equations5, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, {""}, nullptr, 0);
// x-x= 0
const char * equations6[] = {"x-x=0", 0};
assert_equation_system_exact_solve_to(equations6, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, {""}, nullptr, INT_MAX);
// 2x+3=4
const char * equations7[] = {"2x+3=4", 0};
const char * solutions7[] = {"(1)/(2)"};
assert_equation_system_exact_solve_to(equations7, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, {"x", ""}, solutions7, 1);
// 3x^2-4x+4=2
const char * equations8[] = {"3*x^2-4x+4=2", 0};
const char * solutions8[] = {"(2-R(2)*I)/(3)","(2+R(2)*I)/(3)", "-8"};
assert_equation_system_exact_solve_to(equations8, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, {"x", ""}, solutions8, 2);
// 2*x^2-4*x+4=3
const char * equations9[] = {"2*x^2-4*x+4=3", 0};
const char * solutions9[] = {"(2-R(2))/(2)","(2+R(2))/(2)", "8"};
assert_equation_system_exact_solve_to(equations9, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, {"x", ""}, solutions9, 2);
// 2*x^2-4*x+2=0
const char * equations10[] = {"2*x^2-4*x+2=0", 0};
const char * solutions10[] = {"1", "0"};
assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, {"x", ""}, solutions10, 1);
// x^2+x+1=3*x^2+pi*x-R(5)
const char * equations11[] = {"x^2+x+1=3*x^2+P*x-R(5)", 0};
const char * solutions11[] = {"(1-P+R(9+8*R(5)-2*P+P^(2)))/(4)", "(1-P-R(9+8*R(5)-2*P+P^(2)))/(4)", "9+8*R(5)-2*P+P^(2)"};
assert_equation_system_exact_solve_to(equations11, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, {"x", ""}, solutions11, 2);
// TODO
// x^3 - 4x^2 + 6x - 24 = 0
//const char * equations10[] = {"2*x^2-4*x+4=3", 0};
//assert_equation_system_exact_solve_to(equations10, EquationStore::Error::NoError, EquationStore::Type::PolynomialMonovariable, {"x", ""}, {"4", "I*R(6)", "-I*R(6)", "-11616"}, 3);
//x^3+x^2+1=0
// x^3-3x-2=0
// Linear System
const char * equations12[] = {"x+y=0", 0};
assert_equation_system_exact_solve_to(equations12, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, {"x", ""}, nullptr, INT_MAX);
const char * equations13[] = {"x+y=0", "3x+y=-5", 0};
const char * solutions13[] = {"-(5)/(2)", "(5)/(2)"};
assert_equation_system_exact_solve_to(equations13, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, {"x", "y", ""}, solutions13, 2);
const char * equations14[] = {"x+y=0", "3x+y+z=-5", "4z-P=0", 0};
const char * solutions14[] = {"(-20-P)/(8)", "(20+P)/(8)", "(P)/(4)"};
assert_equation_system_exact_solve_to(equations14, EquationStore::Error::NoError, EquationStore::Type::LinearSystem, {"x","y","z",""}, solutions14, 3);
// Monovariable non-polynomial equation
double solutions15[] = {-90.0, 90.0};
assert_equation_approximate_solve_to("cos(x)=0", -100.0, 100.0, "x", solutions15, 2, false);
double solutions16[] = {-810.0, -630.0, -450.0, -270.0, -90.0, 90.0, 270.0, 450.0, 630.0, 810.0};
assert_equation_approximate_solve_to("cos(x)=0", -900.0, 1000.0, "x", solutions16, 10, true);
double solutions17[] = {0};
assert_equation_approximate_solve_to("R(y)=0", -900.0, 1000.0, "y", solutions17, 1, false);
}
}