Files
Upsilon/poincare/src/expression_node.cpp
2019-01-10 11:42:03 +01:00

195 lines
7.3 KiB
C++

#include <poincare/expression_node.h>
#include <poincare/expression.h>
#include <poincare/addition.h>
#include <poincare/arc_tangent.h>
#include <poincare/division.h>
#include <poincare/power.h>
#include <poincare/rational.h>
#include <poincare/sign_function.h>
#include <poincare/square_root.h>
#include <poincare/subtraction.h>
#include <poincare/constant.h>
#include <poincare/undefined.h>
namespace Poincare {
Expression ExpressionNode::replaceSymbolWithExpression(const SymbolAbstract & symbol, const Expression & expression) {
return Expression(this).defaultReplaceSymbolWithExpression(symbol, expression);
}
Expression ExpressionNode::replaceUnknown(const Symbol & symbol) {
return Expression(this).defaultReplaceUnknown(symbol);
}
Expression ExpressionNode::setSign(Sign s, Context * context, Preferences::AngleUnit angleUnit) {
assert(false);
return Expression();
}
int ExpressionNode::polynomialDegree(Context & context, const char * symbolName) const {
for (ExpressionNode * c : children()) {
if (c->polynomialDegree(context, symbolName) != 0) {
return -1;
}
}
return 0;
}
int ExpressionNode::getPolynomialCoefficients(Context & context, const char * symbolName, Expression coefficients[]) const {
return Expression(this).defaultGetPolynomialCoefficients(context, symbolName, coefficients);
}
Expression ExpressionNode::shallowReplaceReplaceableSymbols(Context & context) {
return Expression(this).defaultReplaceReplaceableSymbols(context);
}
int ExpressionNode::getVariables(Context & context, isVariableTest isVariable, char * variables, int maxSizeVariable) const {
int numberOfVariables = 0;
for (ExpressionNode * c : children()) {
int n = c->getVariables(context, isVariable, variables, maxSizeVariable);
if (n < 0) {
return n;
}
numberOfVariables = n > numberOfVariables ? n : numberOfVariables;
}
return numberOfVariables;
}
float ExpressionNode::characteristicXRange(Context & context, Preferences::AngleUnit angleUnit) const {
/* A expression has a characteristic range if at least one of its childAtIndex has
* one and the other are x-independant. We keep the biggest interesting range
* among the childAtIndex interesting ranges. */
float range = 0.0f;
for (ExpressionNode * c : children()) {
float opRange = c->characteristicXRange(context, angleUnit);
if (std::isnan(opRange)) {
return NAN;
} else if (range < opRange) {
range = opRange;
}
}
return range;
}
Expression ExpressionNode::realPart(Context & context, Preferences::AngleUnit angleUnit) const {
return Expression();
}
Expression ExpressionNode::imaginaryPart(Context & context, Preferences::AngleUnit angleUnit) const {
return Expression();
}
Expression ExpressionNode::complexNorm(Context & context, Preferences::AngleUnit angleUnit) const {
Expression a = realPart(context, angleUnit);
Expression b = imaginaryPart(context, angleUnit);
if (!a.isUninitialized() && !b.isUninitialized()) {
// sqrt(a^2+b^2)
return SquareRoot::Builder(
Addition(
Power(a, Rational(2)).shallowReduce(context, angleUnit, ReductionTarget::BottomUpComputation),
Power(b, Rational(2)).shallowReduce(context, angleUnit, ReductionTarget::BottomUpComputation)
).shallowReduce(context, angleUnit, ReductionTarget::BottomUpComputation)
).shallowReduce(context, angleUnit, ReductionTarget::BottomUpComputation);
}
return Expression();
}
Expression ExpressionNode::complexArgument(Context & context, Preferences::AngleUnit angleUnit) const {
Expression a = realPart(context, angleUnit);
Expression b = imaginaryPart(context, angleUnit);
if (!a.isUninitialized() && !b.isUninitialized()) {
if (b.type() != Type::Rational || !static_cast<Rational &>(b).isZero()) {
// arctan(a/b) or (Pi/180)*arctan(a/b)
Expression arcTangent = ArcTangent::Builder(Division(a, b.clone()).shallowReduce(context, angleUnit, ReductionTarget::BottomUpComputation)).shallowReduce(context, angleUnit, ReductionTarget::BottomUpComputation);
if (angleUnit == Preferences::AngleUnit::Degree) {
arcTangent = arcTangent.degreeToRadian(context, angleUnit, ReductionTarget::BottomUpComputation);
}
// sign(b) * Pi/2 - arctan(a/b)
return Subtraction(
Multiplication(
SignFunction::Builder(b).shallowReduce(context, angleUnit),
Division(Constant(Ion::Charset::SmallPi), Rational(2)).shallowReduce(context, angleUnit, ReductionTarget::BottomUpComputation)
).shallowReduce(context, angleUnit, ReductionTarget::BottomUpComputation),
arcTangent
).shallowReduce(context, angleUnit, ReductionTarget::BottomUpComputation);
} else {
// (1-sign(a))*Pi/2
return Multiplication(
Subtraction(
Rational(1),
SignFunction::Builder(a).shallowReduce(context, angleUnit)
).shallowReduce(context, angleUnit, ReductionTarget::BottomUpComputation),
Division(Constant(Ion::Charset::SmallPi), Rational(2)).shallowReduce(context, angleUnit, ReductionTarget::BottomUpComputation)
).shallowReduce(context, angleUnit, ReductionTarget::BottomUpComputation);
}
}
return Expression();
}
int ExpressionNode::SimplificationOrder(const ExpressionNode * e1, const ExpressionNode * e2, bool canBeInterrupted) {
if (e1->type() > e2->type()) {
if (canBeInterrupted && Expression::shouldStopProcessing()) {
return 1;
}
return -(e2->simplificationOrderGreaterType(e1, canBeInterrupted));
} else if (e1->type() == e2->type()) {
return e1->simplificationOrderSameType(e2, canBeInterrupted);
} else {
if (canBeInterrupted && Expression::shouldStopProcessing()) {
return -1;
}
return e1->simplificationOrderGreaterType(e2, canBeInterrupted);
}
}
int ExpressionNode::simplificationOrderSameType(const ExpressionNode * e, bool canBeInterrupted) const {
int index = 0;
for (ExpressionNode * c : children()) {
// The NULL node is the least node type.
if (e->numberOfChildren() <= index) {
return 1;
}
int childIOrder = SimplificationOrder(c, e->childAtIndex(index), canBeInterrupted);
if (childIOrder != 0) {
return childIOrder;
}
index++;
}
// The NULL node is the least node type.
if (e->numberOfChildren() > numberOfChildren()) {
return -1;
}
return 0;
}
void ExpressionNode::deepReduceChildren(Context & context, Preferences::AngleUnit angleUnit, ExpressionNode::ReductionTarget target) {
Expression(this).defaultDeepReduceChildren(context, angleUnit, target);
}
Expression ExpressionNode::shallowReduce(Context & context, Preferences::AngleUnit angleUnit, ReductionTarget target) {
return Expression(this).defaultShallowReduce(context, angleUnit);
}
Expression ExpressionNode::shallowBeautify(Context & context, Preferences::AngleUnit angleUnit) {
return Expression(this).defaultShallowBeautify(context, angleUnit);
}
bool ExpressionNode::isOfType(Type * types, int length) const {
for (int i = 0; i < length; i++) {
if (type() == types[i]) {
return true;
}
}
return false;
}
void ExpressionNode::setChildrenInPlace(Expression other) {
Expression(this).defaultSetChildrenInPlace(other);
}
Expression ExpressionNode::denominator(Context & context, Preferences::AngleUnit angleUnit) const {
return Expression();
}
}