mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 00:37:25 +01:00
94 lines
1.9 KiB
C++
94 lines
1.9 KiB
C++
#include "function.h"
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
namespace Graph {
|
|
|
|
Function::Function(const char * text, KDColor color) :
|
|
m_text{0},
|
|
m_name(text),
|
|
m_color(color),
|
|
m_expression(nullptr),
|
|
m_layout(nullptr),
|
|
m_active(true),
|
|
m_displayDerivative(false)
|
|
{
|
|
}
|
|
|
|
void Function::setContent(const char * c) {
|
|
strlcpy(m_text, c, sizeof(m_text));
|
|
if (m_expression != nullptr) {
|
|
delete m_expression;
|
|
}
|
|
m_expression = Expression::parse(m_text);
|
|
if (m_layout != nullptr) {
|
|
delete m_layout;
|
|
}
|
|
m_layout = nullptr;
|
|
if (m_expression) {
|
|
m_layout = expression()->createLayout();
|
|
}
|
|
}
|
|
|
|
void Function::setColor(KDColor color) {
|
|
m_color = color;
|
|
}
|
|
|
|
Function::~Function() {
|
|
if (m_layout != nullptr) {
|
|
delete m_layout;
|
|
}
|
|
if (m_expression != nullptr) {
|
|
delete m_expression;
|
|
}
|
|
}
|
|
|
|
const char * Function::text() {
|
|
return m_text;
|
|
}
|
|
|
|
const char * Function::name() {
|
|
return m_name;
|
|
}
|
|
|
|
Expression * Function::expression() {
|
|
return m_expression;
|
|
}
|
|
|
|
ExpressionLayout * Function::layout() {
|
|
return m_layout;
|
|
}
|
|
|
|
bool Function::isActive() {
|
|
return m_active;
|
|
}
|
|
|
|
bool Function::displayDerivative() {
|
|
return m_displayDerivative;
|
|
}
|
|
|
|
void Function::setActive(bool active) {
|
|
m_active = active;
|
|
}
|
|
|
|
void Function::setDisplayDerivative(bool display) {
|
|
m_displayDerivative = display;
|
|
}
|
|
|
|
float Function::evaluateAtAbscissa(float x, Context * context, Expression::AngleUnit angleUnit) const {
|
|
Symbol xSymbol = Symbol('x');
|
|
Complex e = Complex(x);
|
|
context->setExpressionForSymbolName(&e, &xSymbol);
|
|
return m_expression->approximate(*context, angleUnit);
|
|
}
|
|
|
|
float Function::approximateDerivative(float x, Context * context, Expression::AngleUnit angleUnit) const {
|
|
Complex abscissa = Complex(x);
|
|
Expression * args[2] = {m_expression, &abscissa};
|
|
Derivative derivative = Derivative();
|
|
derivative.setArgument(args, 2, true);
|
|
return derivative.approximate(*context, angleUnit);
|
|
}
|
|
|
|
}
|