mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-19 00:37:25 +01:00
133 lines
4.7 KiB
C++
133 lines
4.7 KiB
C++
#include <poincare/binomial_coefficient.h>
|
|
#include <poincare/binomial_coefficient_layout.h>
|
|
#include <poincare/rational.h>
|
|
#include <poincare/layout_helper.h>
|
|
#include <poincare/serialization_helper.h>
|
|
#include <poincare/undefined.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <cmath>
|
|
#include <utility>
|
|
|
|
namespace Poincare {
|
|
|
|
constexpr Expression::FunctionHelper BinomialCoefficient::s_functionHelper;
|
|
|
|
int BinomialCoefficientNode::numberOfChildren() const { return BinomialCoefficient::s_functionHelper.numberOfChildren(); }
|
|
|
|
Expression BinomialCoefficientNode::shallowReduce(ReductionContext reductionContext) {
|
|
return BinomialCoefficient(this).shallowReduce(reductionContext.context());
|
|
}
|
|
|
|
Layout BinomialCoefficientNode::createLayout(Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
|
|
return BinomialCoefficientLayout::Builder(
|
|
childAtIndex(0)->createLayout(floatDisplayMode, numberOfSignificantDigits),
|
|
childAtIndex(1)->createLayout(floatDisplayMode, numberOfSignificantDigits));
|
|
}
|
|
|
|
int BinomialCoefficientNode::serialize(char * buffer, int bufferSize, Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
|
|
return SerializationHelper::Prefix(this, buffer, bufferSize, floatDisplayMode, numberOfSignificantDigits, BinomialCoefficient::s_functionHelper.name());
|
|
}
|
|
|
|
template<typename T>
|
|
Complex<T> BinomialCoefficientNode::templatedApproximate(ApproximationContext approximationContext) const {
|
|
Evaluation<T> nInput = childAtIndex(0)->approximate(T(), approximationContext);
|
|
Evaluation<T> kInput = childAtIndex(1)->approximate(T(), approximationContext);
|
|
T n = nInput.toScalar();
|
|
T k = kInput.toScalar();
|
|
return Complex<T>::Builder(compute(k, n));
|
|
}
|
|
|
|
template<typename T>
|
|
T BinomialCoefficientNode::compute(T k, T n) {
|
|
if (std::isnan(n) || std::isnan(k) || k != std::round(k) || k < 0) {
|
|
return NAN;
|
|
}
|
|
// Generalized definition allows any n value
|
|
bool generalized = (n != std::round(n) || n < k);
|
|
// Take advantage of symmetry
|
|
k = (!generalized && k > (n - k)) ? n - k : k;
|
|
|
|
T result = 1;
|
|
for (int i = 0; i < k; i++) {
|
|
result *= (n - (T)i) / (k - (T)i);
|
|
if (std::isinf(result) || std::isnan(result)) {
|
|
return result;
|
|
}
|
|
}
|
|
// If not generalized, the output must be round
|
|
return generalized ? result : std::round(result);
|
|
}
|
|
|
|
|
|
Expression BinomialCoefficient::shallowReduce(Context * context) {
|
|
{
|
|
Expression e = Expression::defaultShallowReduce();
|
|
e = e.defaultHandleUnitsInChildren();
|
|
if (e.isUndefined()) {
|
|
return e;
|
|
}
|
|
}
|
|
Expression c0 = childAtIndex(0);
|
|
Expression c1 = childAtIndex(1);
|
|
|
|
if (c0.deepIsMatrix(context) || c1.deepIsMatrix(context)) {
|
|
return replaceWithUndefinedInPlace();
|
|
}
|
|
|
|
if (c0.type() != ExpressionNode::Type::Rational || c1.type() != ExpressionNode::Type::Rational) {
|
|
return *this;
|
|
}
|
|
|
|
Rational r0 = static_cast<Rational&>(c0);
|
|
Rational r1 = static_cast<Rational&>(c1);
|
|
|
|
if (!r1.isInteger() || r1.isNegative()) {
|
|
return replaceWithUndefinedInPlace();
|
|
}
|
|
|
|
if (!r0.isInteger()) {
|
|
// Generalized binomial coefficient (n is not an integer)
|
|
return *this;
|
|
}
|
|
|
|
Integer n = r0.signedIntegerNumerator();
|
|
Integer k = r1.signedIntegerNumerator();
|
|
/* Check for situations where there should be no reduction in order to avoid
|
|
* too long computation and a huge result. The binomial coefficient will be
|
|
* approximatively evaluated later. */
|
|
if (n.isLowerThan(k)) {
|
|
// Generalized binomial coefficient (n < k)
|
|
if (!n.isNegative()) {
|
|
// When n is an integer and 0 <= n < k, binomial(n,k) is 0.
|
|
return Rational::Builder(0);
|
|
}
|
|
if (Integer(k_maxNValue).isLowerThan(Integer::Subtraction(k, n))) {
|
|
return *this;
|
|
}
|
|
} else if (Integer(k_maxNValue).isLowerThan(n)) {
|
|
return *this;
|
|
}
|
|
Rational result = Rational::Builder(1);
|
|
Integer kBis = Integer::Subtraction(n, k);
|
|
// Take advantage of symmetry if n >= k
|
|
k = !n.isLowerThan(k) && kBis.isLowerThan(k) ? kBis : k;
|
|
int clippedK = k.extractedInt(); // Authorized because k < k_maxNValue
|
|
for (int i = 0; i < clippedK; i++) {
|
|
Integer nMinusI = Integer::Subtraction(n, Integer(i));
|
|
Integer kMinusI = Integer::Subtraction(k, Integer(i));
|
|
Rational factor = Rational::Builder(nMinusI, kMinusI);
|
|
result = Rational::Multiplication(result, factor);
|
|
}
|
|
// As we cap the n < k_maxNValue = 300, result < binomial(300, 150) ~10^89
|
|
// If n was negative, k - n < k_maxNValue, result < binomial(-150,150) ~10^88
|
|
assert(!result.numeratorOrDenominatorIsInfinity());
|
|
replaceWithInPlace(result);
|
|
return std::move(result);
|
|
}
|
|
|
|
template double BinomialCoefficientNode::compute(double k, double n);
|
|
template float BinomialCoefficientNode::compute(float k, float n);
|
|
|
|
}
|