Files
Upsilon/poincare/src/binomial_coefficient.cpp
2020-11-04 15:58:41 +01:00

133 lines
4.7 KiB
C++

#include <poincare/binomial_coefficient.h>
#include <poincare/binomial_coefficient_layout.h>
#include <poincare/rational.h>
#include <poincare/layout_helper.h>
#include <poincare/serialization_helper.h>
#include <poincare/undefined.h>
#include <stdlib.h>
#include <assert.h>
#include <cmath>
#include <utility>
namespace Poincare {
constexpr Expression::FunctionHelper BinomialCoefficient::s_functionHelper;
int BinomialCoefficientNode::numberOfChildren() const { return BinomialCoefficient::s_functionHelper.numberOfChildren(); }
Expression BinomialCoefficientNode::shallowReduce(ReductionContext reductionContext) {
return BinomialCoefficient(this).shallowReduce(reductionContext.context());
}
Layout BinomialCoefficientNode::createLayout(Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
return BinomialCoefficientLayout::Builder(
childAtIndex(0)->createLayout(floatDisplayMode, numberOfSignificantDigits),
childAtIndex(1)->createLayout(floatDisplayMode, numberOfSignificantDigits));
}
int BinomialCoefficientNode::serialize(char * buffer, int bufferSize, Preferences::PrintFloatMode floatDisplayMode, int numberOfSignificantDigits) const {
return SerializationHelper::Prefix(this, buffer, bufferSize, floatDisplayMode, numberOfSignificantDigits, BinomialCoefficient::s_functionHelper.name());
}
template<typename T>
Complex<T> BinomialCoefficientNode::templatedApproximate(ApproximationContext approximationContext) const {
Evaluation<T> nInput = childAtIndex(0)->approximate(T(), approximationContext);
Evaluation<T> kInput = childAtIndex(1)->approximate(T(), approximationContext);
T n = nInput.toScalar();
T k = kInput.toScalar();
return Complex<T>::Builder(compute(k, n));
}
template<typename T>
T BinomialCoefficientNode::compute(T k, T n) {
if (std::isnan(n) || std::isnan(k) || k != std::round(k) || k < 0) {
return NAN;
}
// Generalized definition allows any n value
bool generalized = (n != std::round(n) || n < k);
// Take advantage of symmetry
k = (!generalized && k > (n - k)) ? n - k : k;
T result = 1;
for (int i = 0; i < k; i++) {
result *= (n - (T)i) / (k - (T)i);
if (std::isinf(result) || std::isnan(result)) {
return result;
}
}
// If not generalized, the output must be round
return generalized ? result : std::round(result);
}
Expression BinomialCoefficient::shallowReduce(Context * context) {
{
Expression e = Expression::defaultShallowReduce();
e = e.defaultHandleUnitsInChildren();
if (e.isUndefined()) {
return e;
}
}
Expression c0 = childAtIndex(0);
Expression c1 = childAtIndex(1);
if (c0.deepIsMatrix(context) || c1.deepIsMatrix(context)) {
return replaceWithUndefinedInPlace();
}
if (c0.type() != ExpressionNode::Type::Rational || c1.type() != ExpressionNode::Type::Rational) {
return *this;
}
Rational r0 = static_cast<Rational&>(c0);
Rational r1 = static_cast<Rational&>(c1);
if (!r1.isInteger() || r1.isNegative()) {
return replaceWithUndefinedInPlace();
}
if (!r0.isInteger()) {
// Generalized binomial coefficient (n is not an integer)
return *this;
}
Integer n = r0.signedIntegerNumerator();
Integer k = r1.signedIntegerNumerator();
/* Check for situations where there should be no reduction in order to avoid
* too long computation and a huge result. The binomial coefficient will be
* approximatively evaluated later. */
if (n.isLowerThan(k)) {
// Generalized binomial coefficient (n < k)
if (!n.isNegative()) {
// When n is an integer and 0 <= n < k, binomial(n,k) is 0.
return Rational::Builder(0);
}
if (Integer(k_maxNValue).isLowerThan(Integer::Subtraction(k, n))) {
return *this;
}
} else if (Integer(k_maxNValue).isLowerThan(n)) {
return *this;
}
Rational result = Rational::Builder(1);
Integer kBis = Integer::Subtraction(n, k);
// Take advantage of symmetry if n >= k
k = !n.isLowerThan(k) && kBis.isLowerThan(k) ? kBis : k;
int clippedK = k.extractedInt(); // Authorized because k < k_maxNValue
for (int i = 0; i < clippedK; i++) {
Integer nMinusI = Integer::Subtraction(n, Integer(i));
Integer kMinusI = Integer::Subtraction(k, Integer(i));
Rational factor = Rational::Builder(nMinusI, kMinusI);
result = Rational::Multiplication(result, factor);
}
// As we cap the n < k_maxNValue = 300, result < binomial(300, 150) ~10^89
// If n was negative, k - n < k_maxNValue, result < binomial(-150,150) ~10^88
assert(!result.numeratorOrDenominatorIsInfinity());
replaceWithInPlace(result);
return std::move(result);
}
template double BinomialCoefficientNode::compute(double k, double n);
template float BinomialCoefficientNode::compute(float k, float n);
}