mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-20 01:08:15 +01:00
258 lines
12 KiB
C++
258 lines
12 KiB
C++
#include "equation_store.h"
|
|
#include <limits.h>
|
|
|
|
using namespace Poincare;
|
|
|
|
namespace Solver {
|
|
|
|
EquationStore::EquationStore() :
|
|
m_type(Type::LinearSystem),
|
|
m_numberOfSolutions(0),
|
|
m_exactSolutionExactLayouts{},
|
|
m_exactSolutionApproximateLayouts{}
|
|
{
|
|
}
|
|
|
|
EquationStore::~EquationStore() {
|
|
tidySolution();
|
|
}
|
|
|
|
Equation * EquationStore::emptyModel() {
|
|
static Equation e;
|
|
return &e;
|
|
}
|
|
|
|
void EquationStore::setModelAtIndex(Shared::ExpressionModel * e, int i) {
|
|
m_equations[i] = *(static_cast<Equation *>(e));;
|
|
}
|
|
|
|
void EquationStore::tidy() {
|
|
ExpressionModelStore::tidy();
|
|
tidySolution();
|
|
}
|
|
|
|
Poincare::ExpressionLayout * EquationStore::exactSolutionLayoutAtIndex(int i, bool exactLayout) {
|
|
assert(m_type != Type::Monovariable && i >= 0 && (i < m_numberOfSolutions || (i == m_numberOfSolutions && m_type == Type::PolynomialMonovariable)));
|
|
if (exactLayout) {
|
|
return m_exactSolutionExactLayouts[i];
|
|
} else {
|
|
return m_exactSolutionApproximateLayouts[i];
|
|
}
|
|
}
|
|
|
|
double EquationStore::approximateSolutionAtIndex(int i) {
|
|
assert(m_type == Type::Monovariable && i >= 0 && i < m_numberOfSolutions);
|
|
return m_approximateSolutions[i];
|
|
}
|
|
|
|
EquationStore::Error EquationStore::exactSolve(Poincare::Context * context) {
|
|
tidySolution();
|
|
m_variables[0] = 0;
|
|
int numberOfVariables = 0;
|
|
for (int i = 0; i < numberOfModels(); i++) {
|
|
numberOfVariables = m_equations[i].standardForm(context)->getVariables(m_variables);
|
|
if (numberOfVariables < 0) {
|
|
return Error::TooManyVariables;
|
|
}
|
|
}
|
|
|
|
// 1-- Linear System
|
|
/* Create matrix coefficients and vector constants as:
|
|
* coefficients*(x y z ...) = constants */
|
|
Expression * coefficients[k_maxNumberOfEquations][Expression::k_maxNumberOfVariables];
|
|
Expression * constants[k_maxNumberOfEquations];
|
|
bool success = true;
|
|
for (int i = 0; i < numberOfModels(); i++) {
|
|
success = success && m_equations[i].standardForm(context)->getLinearCoefficients(m_variables, coefficients[i], &constants[i], *context);
|
|
if (!success) {
|
|
for (int j = 0; j < i; j++) {
|
|
for (int k = 0; k < numberOfVariables; k++) {
|
|
delete coefficients[j][k];
|
|
}
|
|
delete constants[j];
|
|
}
|
|
if (numberOfModels() > 1 || numberOfVariables > 1) {
|
|
return Error::NonLinearSystem;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
Expression * exactSolutions[k_maxNumberOfExactSolutions];
|
|
for (int i = 0; i < k_maxNumberOfExactSolutions; i++) {
|
|
exactSolutions[i] = nullptr;
|
|
}
|
|
EquationStore::Error error;
|
|
if (success) {
|
|
m_type = Type::LinearSystem;
|
|
error = resolveLinearSystem(exactSolutions, coefficients, constants, context);
|
|
} else {
|
|
assert(numberOfVariables == 1 && numberOfModels() == 1);
|
|
char x = m_variables[0];
|
|
Expression * polynomialCoefficients[Expression::k_maxNumberOfPolynomialCoefficients];
|
|
int degree = m_equations[0].standardForm(context)->getPolynomialCoefficients(x, polynomialCoefficients, *context);
|
|
if (degree < 0) {
|
|
m_type = Type::Monovariable;
|
|
return Error::RequireApproximateSolution;
|
|
} else {
|
|
m_type = Type::PolynomialMonovariable;
|
|
error = oneDimensialPolynomialSolve(exactSolutions, polynomialCoefficients, degree, context);
|
|
}
|
|
}
|
|
for (int i = 0; i < k_maxNumberOfExactSolutions; i++) {
|
|
if (exactSolutions[i]) {
|
|
m_exactSolutionExactLayouts[i] = exactSolutions[i]->createLayout();
|
|
Expression * approximate = exactSolutions[i]->approximate<double>(*context);
|
|
m_exactSolutionApproximateLayouts[i] = approximate->createLayout();
|
|
delete approximate;
|
|
delete exactSolutions[i];
|
|
}
|
|
}
|
|
return error;
|
|
}
|
|
|
|
EquationStore::Error EquationStore::resolveLinearSystem(Expression * exactSolutions[k_maxNumberOfExactSolutions], Expression * coefficients[k_maxNumberOfEquations][Expression::k_maxNumberOfVariables], Expression * constants[k_maxNumberOfEquations], Context * context) {
|
|
Expression::AngleUnit angleUnit = Preferences::sharedPreferences()->angleUnit();
|
|
int n = strlen(m_variables); // n unknown variables
|
|
int m = numberOfModels(); // m equations
|
|
const Expression ** operandsAb = new const Expression * [(n+1)*m];
|
|
for (int i = 0; i < m; i++) {
|
|
for (int j = 0; j < n; j++) {
|
|
operandsAb[i*(n+1)+j] = coefficients[i][j];
|
|
}
|
|
operandsAb[i*(n+1)+n] = constants[i];
|
|
}
|
|
Matrix * Ab = new Matrix(operandsAb, m, n+1, false);
|
|
delete [] operandsAb;
|
|
int rankAb = Ab->rank(*context, angleUnit, true);
|
|
|
|
// Infinite number of solutions
|
|
m_numberOfSolutions = INT_MAX;
|
|
// Inconsistency?
|
|
for (int j = m-1; j >= 0; j--) {
|
|
bool rowWithNullCoefficients = true;
|
|
for (int i = 0; i < n; i++) {
|
|
if (!Ab->matrixOperand(j, i)->isRationalZero()) {
|
|
rowWithNullCoefficients = false;
|
|
break;
|
|
}
|
|
}
|
|
if (rowWithNullCoefficients && !Ab->matrixOperand(j, n)->isRationalZero()) {
|
|
m_numberOfSolutions = 0;
|
|
}
|
|
}
|
|
if (m_numberOfSolutions > 0) {
|
|
if (rankAb == n && n > 0) {
|
|
m_numberOfSolutions = n;
|
|
for (int i = 0; i < m_numberOfSolutions; i++) {
|
|
Expression * sol = Ab->matrixOperand(i,n);
|
|
exactSolutions[i] = sol;
|
|
Ab->detachOperand(sol);
|
|
Expression::Simplify(&exactSolutions[i], *context);
|
|
}
|
|
}
|
|
}
|
|
delete Ab;
|
|
return Error::NoError;
|
|
}
|
|
|
|
EquationStore::Error EquationStore::oneDimensialPolynomialSolve(Expression * exactSolutions[k_maxNumberOfExactSolutions], Expression * coefficients[Expression::k_maxNumberOfPolynomialCoefficients], int degree, Context * context) {
|
|
assert(degree == 2);
|
|
Expression * deltaDenominator[3] = {new Rational(4), coefficients[0]->clone(), coefficients[2]->clone()};
|
|
Expression * delta = new Subtraction(new Power(coefficients[1]->clone(), new Rational(2), false), new Multiplication(deltaDenominator, 3, false), false);
|
|
Expression::Simplify(&delta, *context);
|
|
if (delta->isRationalZero()) {
|
|
exactSolutions[0] = new Division(new Opposite(coefficients[1], false), new Multiplication(new Rational(2), coefficients[2]), false);
|
|
m_numberOfSolutions = 1;
|
|
} else {
|
|
exactSolutions[0] = new Division(new Subtraction(new Opposite(coefficients[1]->clone(), false), new SquareRoot(delta->clone(), false), false), new Multiplication(new Rational(2), coefficients[2]->clone()), false);
|
|
exactSolutions[1] = new Division(new Addition(new Opposite(coefficients[1], false), new SquareRoot(delta->clone(), false), false), new Multiplication(new Rational(2), coefficients[2]), false);
|
|
m_numberOfSolutions = 2;
|
|
}
|
|
exactSolutions[m_numberOfSolutions] = delta;
|
|
delete coefficients[0];
|
|
for (int i = 0; i < m_numberOfSolutions; i++) {
|
|
Expression::Simplify(&exactSolutions[i], *context);
|
|
}
|
|
return Error::NoError;
|
|
#if 0
|
|
if (degree == 3) {
|
|
Expression * a = coefficients[3];
|
|
Expression * b = coefficients[2];
|
|
Expression * c = coefficients[1];
|
|
Expression * d = coefficients[0];
|
|
// Delta = b^2*c^2+18abcd-27a^2*d^2-4ac^3-4db^3
|
|
Expression * mult0Operands[2] = {new Power(b->clone(), new Rational(2), false), new Power(c->clone(), new Rational(2), false)};
|
|
Expression * mult1Operands[5] = {new Rational(18), a->clone(), b->clone(), c->clone(), d->clone()};
|
|
Expression * mult2Operands[3] = {new Rational(-27), new Power(a->clone(), new Rational(2), false), new Power(d->clone(), new Rational(2), false)};
|
|
Expression * mult3Operands[3] = {new Rational(-4), a->clone(), new Power(c->clone(), new Rational(3), false)};
|
|
Expression * mult4Operands[3] = {new Rational(-4), d->clone(), new Power(b->clone(), new Rational(3), false)};
|
|
Expression * add0Operands[5] = {new Multiplication(mult0Operands, 2, false), new Multiplication(mult1Operands, 5, false), new Multiplication(mult2Operands, 3, false), new Multiplication(mult3Operands, 3, false), new Multiplication(mult4Operands, 3, false)};
|
|
Expression * delta = new Addition(add0Operands, 5, false);
|
|
Simplify(&delta, *context);
|
|
// Delta0 = b^2-3ac
|
|
Expression * mult5Operands[3] = {new Rational(3), a->clone(), c->clone()};
|
|
Expression * delta0 = new Subtraction(new Power(b->clone(), new Rational(2), false), new Multiplication(mult5Operands, 3, false), false);
|
|
Reduce(&delta0, *context);
|
|
if (delta->isRationalZero()) {
|
|
if (delta0->isRationalZero()) {
|
|
// delta0 = 0 && delta = 0 --> x0 = -b/(3a)
|
|
delete delta0;
|
|
m_exactSolutions[0] = new Opposite(new Division(b, new Multiplication(new Rational(3), a, false), false), false);
|
|
m_numberOfSolutions = 1;
|
|
delete c;
|
|
delete d;
|
|
} else {
|
|
// delta = 0 --> x0 = (9ad-bc)/(2delta0)
|
|
// --> x1 = (4abc-9a^2d-b^3)/(a*delta0)
|
|
Expression * mult6Operands[3] = {new Rational(9), a, d};
|
|
m_exactSolutions[0] = new Division(new Subtraction(new Multiplication(mult6Operands, 3, false), new Multiplication(b, c, false), false), new Multiplication(new Rational(2), delta0, false), false);
|
|
Expression * mult7Operands[4] = {new Rational(4), a->clone(), b->clone(), c->clone()};
|
|
Expression * mult8Operands[3] = {new Rational(-9), new Power(a->clone(), new Rational(2), false), d->clone()};
|
|
Expression * add1Operands[3] = {new Multiplication(mult7Operands, 4, false), new Multiplication(mult8Operands,3, false), new Opposite(new Power(b->clone(), new Rational(3), false), false)};
|
|
m_exactSolutions[1] = new Division(new Addition(add1Operands, 3, false), new Multiplication(a->clone(), delta0, false), false);
|
|
m_numberOfSolutions = 2;
|
|
}
|
|
} else {
|
|
// delta1 = 2b^3-9abc+27a^2*d
|
|
Expression * mult9Operands[4] = {new Rational(-9), a, b, c};
|
|
Expression * mult10Operands[3] = {new Rational(27), new Power(a->clone(), new Rational(2), false), d};
|
|
Expression * add2Operands[3] = {new Multiplication(new Rational(2), new Power(b->clone(), new Rational(3), false), false), new Multiplication(mult9Operands, 4, false), new Multiplication(mult10Operands, 3, false)};
|
|
Expression * delta1 = new Addition(add2Operands, 3, false);
|
|
// C = Root((delta1+sqrt(-27a^2*delta))/2, 3)
|
|
Expression * mult11Operands[3] = {new Rational(-27), new Power(a->clone(), new Rational(2), false), (*delta)->clone()};
|
|
Expression * c = new Power(new Division(new Addition(delta1, new SquareRoot(new Multiplication(mult11Operands, 3, false), false), false), new Rational(2), false), new Rational(1,3), false);
|
|
Expression * unary3roots[2] = {new Addition(new Rational(-1,2), new Division(new Multiplication(new SquareRoot(new Rational(3), false), new Symbol(Ion::Charset::IComplex), false), new Rational(2), false), false), new Subtraction(new Rational(-1,2), new Division(new Multiplication(new SquareRoot(new Rational(3), false), new Symbol(Ion::Charset::IComplex), false), new Rational(2), false), false)};
|
|
// x_k = -1/(3a)*(b+C*z+delta0/(zC)) with z = unary cube root
|
|
for (int k = 0; k < 3; k++) {
|
|
Expression * ccopy = c;
|
|
Expression * delta0copy = delta0;
|
|
if (k < 2) {
|
|
ccopy = new Multiplication(c->clone(), unary3roots[k], false);
|
|
delta0copy = delta0->clone();
|
|
}
|
|
Expression * add3Operands[3] = {b->clone(), ccopy, new Division(delta0copy, ccopy->clone(), false)};
|
|
m_exactSolutions[k] = new Multiplication(new Division(new Rational(-1), new Multiplication(new Rational(3), a->clone(), false), false), new Addition(add3Operands, 3, false), false);
|
|
}
|
|
m_numberOfSolutions = 3;
|
|
}
|
|
m_exactSolutions[m_numberOfSolutions] = delta;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void EquationStore::tidySolution() {
|
|
for (int i = 0; i < k_maxNumberOfExactSolutions; i++) {
|
|
if (m_exactSolutionExactLayouts[i]) {
|
|
delete m_exactSolutionExactLayouts[i];
|
|
m_exactSolutionExactLayouts[i] = nullptr;
|
|
}
|
|
if (m_exactSolutionApproximateLayouts[i]) {
|
|
delete m_exactSolutionApproximateLayouts[i];
|
|
m_exactSolutionApproximateLayouts[i] = nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|