Files
Upsilon/apps/probability/distribution/binomial_distribution.cpp
Arthur Camouseigt 018dd91ca1 [Probability] Changed distribution parameter's type to double
Plots are still rendered in float but computations are now in double

Change-Id: I7e0a38effb780861b1443ee92a097cd319de3bc8
2020-11-04 14:45:35 +01:00

83 lines
2.4 KiB
C++

#include "binomial_distribution.h"
#include <poincare/binomial_distribution.h>
#include <assert.h>
#include <cmath>
namespace Probability {
I18n::Message BinomialDistribution::parameterNameAtIndex(int index) {
assert(index >= 0 && index < 2);
if (index == 0) {
return I18n::Message::N;
} else {
return I18n::Message::P;
}
}
I18n::Message BinomialDistribution::parameterDefinitionAtIndex(int index) {
assert(index >= 0 && index < 2);
if (index == 0) {
return I18n::Message::RepetitionNumber;
} else {
return I18n::Message::SuccessProbability;
}
}
float BinomialDistribution::evaluateAtAbscissa(float x) const {
return Poincare::BinomialDistribution::EvaluateAtAbscissa<float>(x, m_parameter1, m_parameter2);
}
float BinomialDistribution::xMin() const {
float min = 0.0f;
float max = m_parameter1 > 0.0 ? m_parameter1 : 1.0f;
return min - k_displayLeftMarginRatio * (max - min);
}
float BinomialDistribution::xMax() const {
float min = 0.0f;
float max = m_parameter1;
if (max <= min) {
max = min + 1.0f;
}
return max + k_displayRightMarginRatio*(max - min);
}
float BinomialDistribution::yMax() const {
int maxAbscissa = m_parameter2 < 1.0 ? (m_parameter1+1)*m_parameter2 : m_parameter1;
float result = evaluateAtAbscissa(maxAbscissa);
if (result <= 0.0f || std::isnan(result)) {
result = 1.0f;
}
return result*(1.0f+ k_displayTopMarginRatio);
}
bool BinomialDistribution::authorizedValueAtIndex(float x, int index) const {
if (index == 0) {
// n must be a positive integer
return (x == (int)x) && x >= 0.0f;
}
// p must be between 0 and 1
return (x >= 0.0f) && (x <= 1.0f);
}
double BinomialDistribution::cumulativeDistributiveInverseForProbability(double * probability) {
return Poincare::BinomialDistribution::CumulativeDistributiveInverseForProbability<double>(*probability, m_parameter1, m_parameter2);
}
double BinomialDistribution::rightIntegralInverseForProbability(double * probability) {
if (m_parameter1 == 0.0 && (m_parameter2 == 0.0 || m_parameter2 == 1.0)) {
return NAN;
}
if (*probability <= 0.0) {
return m_parameter1;
}
return Distribution::rightIntegralInverseForProbability(probability);
}
double BinomialDistribution::evaluateAtDiscreteAbscissa(int k) const {
return Poincare::BinomialDistribution::EvaluateAtAbscissa<double>((double) k, m_parameter1, m_parameter2);
}
}