Files
Upsilon/poincare/test/expression_properties.cpp
Léa Saviot 9e94304db0 [poincre/test] Rename assert_simplify -> assert_reduce
And assert_expression_simplify -> assert_expression_reduce
2020-07-16 11:46:23 +02:00

442 lines
24 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#include <apps/shared/global_context.h>
#include "helper.h"
using namespace Poincare;
QUIZ_CASE(poincare_properties_is_number) {
quiz_assert(BasedInteger::Builder("2",Integer::Base::Binary).isNumber());
quiz_assert(BasedInteger::Builder("2",Integer::Base::Decimal).isNumber());
quiz_assert(BasedInteger::Builder("2",Integer::Base::Hexadecimal).isNumber());
quiz_assert(Decimal::Builder("2",3).isNumber());
quiz_assert(Float<float>::Builder(1.0f).isNumber());
quiz_assert(Infinity::Builder(true).isNumber());
quiz_assert(Undefined::Builder().isNumber());
quiz_assert(Rational::Builder(2,3).isNumber());
quiz_assert(!Symbol::Builder('a').isNumber());
quiz_assert(!Multiplication::Builder(Rational::Builder(1), Rational::Builder(2)).isNumber());
quiz_assert(!Addition::Builder(Rational::Builder(1), Rational::Builder(2)).isNumber());
}
QUIZ_CASE(poincare_properties_is_random) {
quiz_assert(Random::Builder().isRandom());
quiz_assert(Randint::Builder(Rational::Builder(1), Rational::Builder(2)).isRandom());
quiz_assert(!Symbol::Builder('a').isRandom());
quiz_assert(!Rational::Builder(2,3).isRandom());
}
QUIZ_CASE(poincare_properties_is_parametered_expression) {
quiz_assert(Derivative::Builder(Rational::Builder(1), Symbol::Builder('x'), Rational::Builder(2)).isParameteredExpression());
quiz_assert(Integral::Builder(Rational::Builder(1), Symbol::Builder('x'), Rational::Builder(2), Rational::Builder(2)).isParameteredExpression());
quiz_assert(Sum::Builder(Rational::Builder(1), Symbol::Builder('n'), Rational::Builder(2), Rational::Builder(2)).isParameteredExpression());
quiz_assert(Product::Builder(Rational::Builder(1), Symbol::Builder('n'), Rational::Builder(2), Rational::Builder(2)).isParameteredExpression());
quiz_assert(!Symbol::Builder('a').isParameteredExpression());
quiz_assert(!Rational::Builder(2,3).isParameteredExpression());
}
void assert_expression_has_property(const char * expression, Context * context, Expression::ExpressionTest test) {
Expression e = parse_expression(expression, context, false);
quiz_assert_print_if_failure(e.recursivelyMatches(test, context), expression);
}
void assert_expression_has_not_property(const char * expression, Context * context, Expression::ExpressionTest test) {
Expression e = parse_expression(expression, context, false);
quiz_assert_print_if_failure(!e.recursivelyMatches(test, context), expression);
}
QUIZ_CASE(poincare_properties_is_approximate) {
Shared::GlobalContext context;
assert_expression_has_property("3.4", &context, Expression::IsApproximate);
assert_expression_has_property("2.3+1", &context, Expression::IsApproximate);
assert_expression_has_not_property("a", &context, Expression::IsApproximate);
assert_reduce("42.3→a");
assert_expression_has_property("a", &context, Expression::IsApproximate);
Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy();
}
QUIZ_CASE(poincare_properties_is_matrix) {
Shared::GlobalContext context;
assert_expression_has_property("[[1,2][3,4]]", &context, Expression::IsMatrix);
assert_expression_has_property("confidence(0.2,3)*2", &context, Expression::IsMatrix);
assert_expression_has_property("dim([[1,2][3,4]])/3", &context, Expression::IsMatrix);
assert_expression_has_property("prediction(0.3,10)", &context, Expression::IsMatrix);
assert_expression_has_property("[[1,2][3,4]]^(-1)", &context, Expression::IsMatrix);
assert_expression_has_property("inverse([[1,2][3,4]])", &context, Expression::IsMatrix);
assert_expression_has_property("3*identity(4)", &context, Expression::IsMatrix);
assert_expression_has_property("transpose([[1,2][3,4]])", &context, Expression::IsMatrix);
assert_expression_has_not_property("2*3+1", &context, Expression::IsMatrix);
}
void assert_expression_is_deep_matrix(const char * expression) {
Shared::GlobalContext context;
Expression e = parse_expression(expression, &context, false);
quiz_assert_print_if_failure(e.deepIsMatrix(&context), expression);
}
void assert_expression_is_not_deep_matrix(const char * expression) {
Shared::GlobalContext context;
Expression e = parse_expression(expression, &context, false);
quiz_assert_print_if_failure(!e.deepIsMatrix(&context), expression);
}
QUIZ_CASE(poincare_properties_deep_is_matrix) {
assert_expression_is_not_deep_matrix("diff([[1,2][3,4]],x,2)");
assert_expression_is_not_deep_matrix("sign([[1,2][3,4]])");
assert_expression_is_not_deep_matrix("3");
assert_expression_is_deep_matrix("2*dim(2)");
assert_expression_is_deep_matrix("log(confidence(0.2,20))");
assert_expression_is_deep_matrix("confidence(0.2,20)^2");
assert_expression_is_deep_matrix("cos(confidence(0.2,20))");
}
QUIZ_CASE(poincare_properties_is_infinity) {
Shared::GlobalContext context;
assert_expression_has_property("3.4+inf", &context, Expression::IsInfinity);
assert_expression_has_not_property("2.3+1", &context, Expression::IsInfinity);
assert_expression_has_not_property("a", &context, Expression::IsInfinity);
assert_reduce("42.3+inf→a");
assert_expression_has_property("a", &context, Expression::IsInfinity);
Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy();
}
constexpr Poincare::ExpressionNode::Sign Positive = Poincare::ExpressionNode::Sign::Positive;
constexpr Poincare::ExpressionNode::Sign Negative = Poincare::ExpressionNode::Sign::Negative;
constexpr Poincare::ExpressionNode::Sign Unknown = Poincare::ExpressionNode::Sign::Unknown;
void assert_reduced_expression_sign(const char * expression, Poincare::ExpressionNode::Sign sign, Preferences::ComplexFormat complexFormat = Cartesian, Preferences::AngleUnit angleUnit = Radian) {
Shared::GlobalContext globalContext;
Expression e = parse_expression(expression, &globalContext, false);
e = e.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, ExpressionNode::ReductionTarget::SystemForApproximation));
quiz_assert_print_if_failure(e.sign(&globalContext) == sign, expression);
}
QUIZ_CASE(poincare_properties_decimal_sign) {
quiz_assert(Decimal::Builder(-2, 3).sign() == ExpressionNode::Sign::Negative);
quiz_assert(Decimal::Builder(-2, -3).sign() == ExpressionNode::Sign::Negative);
quiz_assert(Decimal::Builder(2, -3).sign() == ExpressionNode::Sign::Positive);
quiz_assert(Decimal::Builder(2, 3).sign() == ExpressionNode::Sign::Positive);
quiz_assert(Decimal::Builder(0, 1).sign() == ExpressionNode::Sign::Positive);
}
QUIZ_CASE(poincare_properties_based_integer_sign) {
quiz_assert(BasedInteger::Builder(2, Integer::Base::Binary).sign() == ExpressionNode::Sign::Positive);
quiz_assert(BasedInteger::Builder(2, Integer::Base::Decimal).sign() == ExpressionNode::Sign::Positive);
quiz_assert(BasedInteger::Builder(2, Integer::Base::Hexadecimal).sign() == ExpressionNode::Sign::Positive);
}
QUIZ_CASE(poincare_properties_rational_sign) {
quiz_assert(Rational::Builder(-2).sign() == ExpressionNode::Sign::Negative);
quiz_assert(Rational::Builder(-2, 3).sign() == ExpressionNode::Sign::Negative);
quiz_assert(Rational::Builder(2, 3).sign() == ExpressionNode::Sign::Positive);
quiz_assert(Rational::Builder(0, 3).sign() == ExpressionNode::Sign::Positive);
}
QUIZ_CASE(poincare_properties_sign) {
assert_reduced_expression_sign("abs(-cos(2)+I)", Positive);
assert_reduced_expression_sign("2.345ᴇ-23", Positive);
assert_reduced_expression_sign("-2.345ᴇ-23", Negative);
assert_reduced_expression_sign("2×(-3)×abs(-32)", Negative);
assert_reduced_expression_sign("2×(-3)×abs(-32)×cos(3)", Unknown);
assert_reduced_expression_sign("x", Unknown);
assert_reduced_expression_sign("2^(-abs(3))", Positive);
assert_reduced_expression_sign("(-2)^4", Positive);
assert_reduced_expression_sign("(-2)^3", Negative);
assert_reduced_expression_sign("random()", Positive);
assert_reduced_expression_sign("42/3", Positive);
assert_reduced_expression_sign("-23/32", Negative);
assert_reduced_expression_sign("𝐢", Unknown);
assert_reduced_expression_sign("", Negative);
assert_reduced_expression_sign("π", Positive);
assert_reduced_expression_sign("", Positive);
assert_reduced_expression_sign("0", Positive);
assert_reduced_expression_sign("cos(π/2)", Positive);
assert_reduced_expression_sign("cos(90)", Positive, Cartesian, Degree);
assert_reduced_expression_sign("√(-1)", Unknown);
assert_reduced_expression_sign("√(-1)", Unknown, Real);
assert_reduced_expression_sign("sign(π)", Positive);
assert_reduced_expression_sign("sign(-π)", Negative);
assert_reduced_expression_sign("a", Unknown);
assert_reduce("42→a");
assert_reduced_expression_sign("a", Positive);
Ion::Storage::sharedStorage()->recordNamed("a.exp").destroy();
}
void assert_expression_is_real(const char * expression) {
Shared::GlobalContext context;
// isReal can be call only on reduced expressions
Expression e = parse_expression(expression, &context, false).reduce(ExpressionNode::ReductionContext(&context, Cartesian, Radian, ExpressionNode::ReductionTarget::SystemForApproximation));
quiz_assert_print_if_failure(e.isReal(&context), expression);
}
void assert_expression_is_not_real(const char * expression) {
Shared::GlobalContext context;
// isReal can be call only on reduced expressions
Expression e = parse_expression(expression, &context, false).reduce(ExpressionNode::ReductionContext(&context, Cartesian, Radian, ExpressionNode::ReductionTarget::SystemForApproximation));
quiz_assert_print_if_failure(!e.isReal(&context), expression);
}
QUIZ_CASE(poincare_properties_is_real) {
assert_expression_is_real("atan(4)");
assert_expression_is_not_real("atan(𝐢)");
assert_expression_is_real("conj(4)");
assert_expression_is_not_real("conj(𝐢)");
assert_expression_is_real("sin(4)");
assert_expression_is_not_real("sin(𝐢)");
assert_expression_is_real("quo(2,3+a)");
assert_expression_is_real("sign(2)");
assert_expression_is_real("abs(2)");
assert_expression_is_not_real("abs([[1,2]])");
assert_expression_is_real("ceil(2)");
assert_expression_is_not_real("ceil([[1,2]])");
assert_expression_is_not_real("1+2+3+3×𝐢");
assert_expression_is_real("1+2+3+root(2,3)");
assert_expression_is_real("1×23×3×root(2,3)");
assert_expression_is_not_real("1×23×3×root(2,3)×3×𝐢");
assert_expression_is_not_real("1×23×3×[[1,2]]");
assert_expression_is_not_real("1×23×3×abs(confidence(cos(5)/25,3))");
assert_expression_is_real("π");
assert_expression_is_not_real("unreal");
assert_expression_is_not_real("undef");
assert_expression_is_real("2.3");
assert_expression_is_real("2^3.4");
assert_expression_is_real("(-2)^(-3)");
assert_expression_is_not_real("𝐢^3.4");
assert_expression_is_not_real("2^(3.4𝐢)");
assert_expression_is_not_real("(-2)^0.4");
}
void assert_reduced_expression_polynomial_degree(const char * expression, int degree, const char * symbolName = "x", Preferences::ComplexFormat complexFormat = Cartesian, Preferences::AngleUnit angleUnit = Radian) {
Shared::GlobalContext globalContext;
Expression e = parse_expression(expression, &globalContext, false);
Expression result = e.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, SystemForApproximation));
quiz_assert_print_if_failure(result.polynomialDegree(&globalContext, symbolName) == degree, expression);
}
QUIZ_CASE(poincare_properties_polynomial_degree) {
assert_reduced_expression_polynomial_degree("x+1", 1);
assert_reduced_expression_polynomial_degree("cos(2)+1", 0);
assert_reduced_expression_polynomial_degree("confidence(0.2,10)+1", -1);
assert_reduced_expression_polynomial_degree("diff(3×x+x,x,2)", -1);
assert_reduced_expression_polynomial_degree("diff(3×x+x,x,x)", -1);
assert_reduced_expression_polynomial_degree("diff(3×x+x,x,x)", 0, "a");
assert_reduced_expression_polynomial_degree("(3×x+2)/3", 1);
assert_reduced_expression_polynomial_degree("(3×x+2)/x", -1);
assert_reduced_expression_polynomial_degree("int(2×x,x, 0, 1)", -1);
assert_reduced_expression_polynomial_degree("int(2×x,x, 0, 1)", 0, "a");
assert_reduced_expression_polynomial_degree("[[1,2][3,4]]", -1);
assert_reduced_expression_polynomial_degree("(x^2+2)×(x+1)", 3);
assert_reduced_expression_polynomial_degree("-(x+1)", 1);
assert_reduced_expression_polynomial_degree("(x^2+2)^(3)", 6);
assert_reduced_expression_polynomial_degree("prediction(0.2,10)+1", -1);
assert_reduced_expression_polynomial_degree("2-x-x^3", 3);
assert_reduced_expression_polynomial_degree("π×x", 1);
assert_reduced_expression_polynomial_degree("√(-1)×x", -1, "x", Real);
// f: x→x^2+πx+1
assert_reduce("1+π×x+x^2→f(x)");
assert_reduced_expression_polynomial_degree("f(x)", 2);
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
}
void assert_reduced_expression_has_characteristic_range(Expression e, float range, Preferences::AngleUnit angleUnit = Preferences::AngleUnit::Degree) {
Shared::GlobalContext globalContext;
e = e.reduce(ExpressionNode::ReductionContext(&globalContext, Preferences::ComplexFormat::Cartesian, angleUnit, ExpressionNode::ReductionTarget::SystemForApproximation));
if (std::isnan(range)) {
quiz_assert(std::isnan(e.characteristicXRange(&globalContext, angleUnit)));
} else {
quiz_assert(std::fabs(e.characteristicXRange(&globalContext, angleUnit) - range) < 0.0000001f);
}
}
QUIZ_CASE(poincare_properties_characteristic_range) {
// cos(x), degree
assert_reduced_expression_has_characteristic_range(Cosine::Builder(Symbol::Builder(UCodePointUnknown)), 360.0f);
// cos(-x), degree
assert_reduced_expression_has_characteristic_range(Cosine::Builder(Opposite::Builder(Symbol::Builder(UCodePointUnknown))), 360.0f);
// cos(x), radian
assert_reduced_expression_has_characteristic_range(Cosine::Builder(Symbol::Builder(UCodePointUnknown)), 2.0f*M_PI, Preferences::AngleUnit::Radian);
// cos(-x), radian
assert_reduced_expression_has_characteristic_range(Cosine::Builder(Opposite::Builder(Symbol::Builder(UCodePointUnknown))), 2.0f*M_PI, Preferences::AngleUnit::Radian);
// sin(9x+10), degree
assert_reduced_expression_has_characteristic_range(Sine::Builder(Addition::Builder(Multiplication::Builder(Rational::Builder(9),Symbol::Builder(UCodePointUnknown)),Rational::Builder(10))), 40.0f);
// sin(9x+10)+cos(x/2), degree
assert_reduced_expression_has_characteristic_range(Addition::Builder(Sine::Builder(Addition::Builder(Multiplication::Builder(Rational::Builder(9),Symbol::Builder(UCodePointUnknown)),Rational::Builder(10))),Cosine::Builder(Division::Builder(Symbol::Builder(UCodePointUnknown),Rational::Builder(2)))), 720.0f);
// sin(9x+10)+cos(x/2), radian
assert_reduced_expression_has_characteristic_range(Addition::Builder(Sine::Builder(Addition::Builder(Multiplication::Builder(Rational::Builder(9),Symbol::Builder(UCodePointUnknown)),Rational::Builder(10))),Cosine::Builder(Division::Builder(Symbol::Builder(UCodePointUnknown),Rational::Builder(2)))), 4.0f*M_PI, Preferences::AngleUnit::Radian);
// x, degree
assert_reduced_expression_has_characteristic_range(Symbol::Builder(UCodePointUnknown), NAN);
// cos(3)+2, degree
assert_reduced_expression_has_characteristic_range(Addition::Builder(Cosine::Builder(Rational::Builder(3)),Rational::Builder(2)), 0.0f);
// log(cos(40x), degree
assert_reduced_expression_has_characteristic_range(CommonLogarithm::Builder(Cosine::Builder(Multiplication::Builder(Rational::Builder(40),Symbol::Builder(UCodePointUnknown)))), 9.0f);
// cos(cos(x)), degree
assert_reduced_expression_has_characteristic_range(Cosine::Builder((Expression)Cosine::Builder(Symbol::Builder(UCodePointUnknown))), 360.0f);
// f(x) with f : x --> cos(x), degree
assert_reduce("cos(x)→f(x)");
assert_reduced_expression_has_characteristic_range(Function::Builder("f",1,Symbol::Builder(UCodePointUnknown)), 360.0f);
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
}
void assert_expression_has_variables(const char * expression, const char * variables[], int trueNumberOfVariables) {
Shared::GlobalContext globalContext;
Expression e = parse_expression(expression, &globalContext, false);
constexpr static int k_maxVariableSize = Poincare::SymbolAbstract::k_maxNameSize;
char variableBuffer[Expression::k_maxNumberOfVariables][k_maxVariableSize] = {{0}};
int numberOfVariables = e.getVariables(&globalContext, [](const char * symbol, Poincare::Context * context) { return true; }, (char *)variableBuffer, k_maxVariableSize);
quiz_assert_print_if_failure(trueNumberOfVariables == numberOfVariables, expression);
if (numberOfVariables < 0) {
// Too many variables
return;
}
int index = 0;
while (index < Expression::k_maxNumberOfVariables && (variableBuffer[index][0] != 0 || variables[index][0] != 0)) {
quiz_assert_print_if_failure(strcmp(variableBuffer[index], variables[index]) == 0, expression);
index++;
}
}
QUIZ_CASE(poincare_properties_get_variables) {
const char * variableBuffer1[] = {"x","y",""};
assert_expression_has_variables("x+y", variableBuffer1, 2);
const char * variableBuffer2[] = {"x","y","z","t",""};
assert_expression_has_variables("x+y+z+2×t", variableBuffer2, 4);
const char * variableBuffer3[] = {"a","x","y","k","A", ""};
assert_expression_has_variables("a+x^2+2×y+k!×A", variableBuffer3, 5);
const char * variableBuffer4[] = {"BABA","abab", ""};
assert_expression_has_variables("BABA+abab", variableBuffer4, 2);
const char * variableBuffer5[] = {"BBBBBB", ""};
assert_expression_has_variables("BBBBBB", variableBuffer5, 1);
const char * variableBuffer6[] = {""};
assert_expression_has_variables("a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+aa+bb+cc+dd+ee+ff+gg+hh+ii+jj+kk+ll+mm+nn+oo", variableBuffer6, -1);
assert_expression_has_variables("a+b+c+d+e+f+g", variableBuffer6, -1);
// f: x→1+πx+x^2+toto
assert_reduce("1+π×x+x^2+toto→f(x)");
const char * variableBuffer7[] = {"tata","toto", ""};
assert_expression_has_variables("f(tata)", variableBuffer7, 2);
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
const char * variableBuffer8[] = {"y", ""};
assert_expression_has_variables("diff(3x,x,0)y-2", variableBuffer8, 1);
const char * variableBuffer9[] = {"a", "b", "c", "d", "e", "f"};
assert_expression_has_variables("a+b+c+d+e+f", variableBuffer9, 6);
}
void assert_reduced_expression_has_polynomial_coefficient(const char * expression, const char * symbolName, const char ** coefficients, Preferences::ComplexFormat complexFormat = Cartesian, Preferences::AngleUnit angleUnit = Radian, ExpressionNode::SymbolicComputation symbolicComputation = ReplaceAllDefinedSymbolsWithDefinition) {
Shared::GlobalContext globalContext;
Expression e = parse_expression(expression, &globalContext, false);
e = e.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, SystemForAnalysis, symbolicComputation));
Expression coefficientBuffer[Poincare::Expression::k_maxNumberOfPolynomialCoefficients];
int d = e.getPolynomialReducedCoefficients(symbolName, coefficientBuffer, &globalContext, complexFormat, Radian, symbolicComputation);
for (int i = 0; i <= d; i++) {
Expression f = parse_expression(coefficients[i], &globalContext, false);
coefficientBuffer[i] = coefficientBuffer[i].reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, SystemForAnalysis, symbolicComputation));
f = f.reduce(ExpressionNode::ReductionContext(&globalContext, complexFormat, angleUnit, SystemForAnalysis, symbolicComputation));
quiz_assert_print_if_failure(coefficientBuffer[i].isIdenticalTo(f), expression);
}
quiz_assert_print_if_failure(coefficients[d+1] == 0, expression);
}
QUIZ_CASE(poincare_properties_get_polynomial_coefficients) {
const char * coefficient0[] = {"2", "1", "1", 0};
assert_reduced_expression_has_polynomial_coefficient("x^2+x+2", "x", coefficient0);
const char * coefficient1[] = {"12+(-6)×π", "12", "3", 0}; //3×x^2+12×x-6×π+12
assert_reduced_expression_has_polynomial_coefficient("3×(x+2)^2-6×π", "x", coefficient1);
// TODO: decomment when enable 3-degree polynomes
//const char * coefficient2[] = {"2+32×x", "2", "6", "2", 0}; //2×n^3+6×n^2+2×n+2+32×x
//assert_reduced_expression_has_polynomial_coefficient("2×(n+1)^3-4n+32×x", "n", coefficient2);
const char * coefficient3[] = {"1", "", "1", 0}; //x^2-π×x+1
assert_reduced_expression_has_polynomial_coefficient("x^2-π×x+1", "x", coefficient3);
// f: x→x^2+Px+1
assert_reduce("1+π×x+x^2→f(x)");
const char * coefficient4[] = {"1", "π", "1", 0}; //x^2+π×x+1
assert_reduced_expression_has_polynomial_coefficient("f(x)", "x", coefficient4);
const char * coefficient5[] = {"0", "𝐢", 0}; //√(-1)x
assert_reduced_expression_has_polynomial_coefficient("√(-1)x", "x", coefficient5);
const char * coefficient6[] = {0}; //√(-1)x
assert_reduced_expression_has_polynomial_coefficient("√(-1)x", "x", coefficient6, Real);
// 3 -> x
assert_reduce("3→x");
const char * coefficient7[] = {"4", 0};
assert_reduced_expression_has_polynomial_coefficient("x+1", "x", coefficient7 );
const char * coefficient8[] = {"2", "1", 0};
assert_reduced_expression_has_polynomial_coefficient("x+2", "x", coefficient8, Real, Radian, DoNotReplaceAnySymbol);
assert_reduced_expression_has_polynomial_coefficient("x+2", "x", coefficient8, Real, Radian, ReplaceDefinedFunctionsWithDefinitions);
assert_reduced_expression_has_polynomial_coefficient("f(x)", "x", coefficient4, Cartesian, Radian, ReplaceDefinedFunctionsWithDefinitions);
// Clear the storage
Ion::Storage::sharedStorage()->recordNamed("f.func").destroy();
Ion::Storage::sharedStorage()->recordNamed("x.exp").destroy();
}
void assert_reduced_expression_unit_is(const char * expression, const char * unit) {
Shared::GlobalContext globalContext;
ExpressionNode::ReductionContext redContext(&globalContext, Real, Degree, SystemForApproximation);
Expression e = parse_expression(expression, &globalContext, false);
e = e.reduce(redContext);
Expression u1;
e = e.removeUnit(&u1);
Expression e2 = parse_expression(unit, &globalContext, false);
Expression u2;
e2 = e2.reduce(redContext);
e2.removeUnit(&u2);
quiz_assert_print_if_failure(u1.isUninitialized() == u2.isUninitialized() && (u1.isUninitialized() || u1.isIdenticalTo(u2)), expression);
}
QUIZ_CASE(poincare_properties_remove_unit) {
assert_reduced_expression_unit_is("_km", "_m");
assert_reduced_expression_unit_is("_min/_km", "_m^(-1)×_s");
assert_reduced_expression_unit_is("_km^3", "_m^3");
assert_reduced_expression_unit_is("1_m+_km", "_m");
assert_reduced_expression_unit_is("_L^2×3×_s", "_m^6×_s");
}
void assert_seconds_split_to(double totalSeconds, const char * splittedTime, Context * context, Preferences::ComplexFormat complexFormat, Preferences::AngleUnit angleUnit) {
Expression time = Unit::BuildTimeSplit(totalSeconds, context, complexFormat, angleUnit);
constexpr static int bufferSize = 100;
char buffer[bufferSize];
time.serialize(buffer, bufferSize, DecimalMode);
quiz_assert_print_if_failure(strcmp(buffer, splittedTime) == 0, splittedTime);
}
Expression extract_unit(const char * expression) {
Shared::GlobalContext globalContext;
ExpressionNode::ReductionContext reductionContext = ExpressionNode::ReductionContext(&globalContext, Cartesian, Degree, User, ReplaceAllSymbolsWithUndefined, NoUnitConversion);
Expression e = parse_expression(expression, &globalContext, false).reduce(reductionContext);
Expression unit;
e.removeUnit(&unit);
return unit;
}
QUIZ_CASE(poincare_expression_unit_helper) {
// 1. Time
Expression s = extract_unit("_s");
quiz_assert(s.type() == ExpressionNode::Type::Unit && static_cast<Unit &>(s).isSecond());
quiz_assert(!static_cast<Unit &>(s).isMeter());
Shared::GlobalContext globalContext;
assert_seconds_split_to(1234567890, "39×_year+1×_month+13×_day+19×_h+1×_min+30×_s", &globalContext, Cartesian, Degree);
assert_seconds_split_to(-122, "-2×_min-2×_s", &globalContext, Cartesian, Degree);
// 2. Speed
Expression meterPerSecond = extract_unit("_m×_s^-1");
quiz_assert(Unit::IsSISpeed(meterPerSecond));
// 3. Volume
Expression meter3 = extract_unit("_m^3");
quiz_assert(Unit::IsSIVolume(meter3));
// 4. Energy
Expression kilogramMeter2PerSecond2 = extract_unit("_kg×_m^2×_s^-2");
quiz_assert(Unit::IsSIEnergy(kilogramMeter2PerSecond2));
Expression kilogramMeter3PerSecond2 = extract_unit("_kg×_m^3×_s^-2");
quiz_assert(!Unit::IsSIEnergy(kilogramMeter3PerSecond2));
// 5. International System
quiz_assert(Unit::IsSI(kilogramMeter2PerSecond2));
quiz_assert(Unit::IsSI(meter3));
quiz_assert(Unit::IsSI(meterPerSecond));
Expression joule = extract_unit("_J");
quiz_assert(!Unit::IsSI(joule));
}