Files
Upsilon/apps/probability/law/binomial_law.cpp
Émilie Feral adc80cd71b [apps][escher] I18n
Change-Id: I4d6f40155a8a182184af9ef2a583d0469196ffd5
2017-03-16 15:12:12 +01:00

135 lines
2.9 KiB
C++

#include "binomial_law.h"
#include <assert.h>
#include <math.h>
namespace Probability {
BinomialLaw::BinomialLaw() :
TwoParameterLaw(20.0f, 0.5f)
{
}
I18n::Message BinomialLaw::title() {
return I18n::Message::BinomialLaw;
}
Law::Type BinomialLaw::type() const {
return Type::Binomial;
}
bool BinomialLaw::isContinuous() const {
return false;
}
I18n::Message BinomialLaw::parameterNameAtIndex(int index) {
assert(index >= 0 && index < 2);
if (index == 0) {
return I18n::Message::N;
} else {
return I18n::Message::P;
}
}
I18n::Message BinomialLaw::parameterDefinitionAtIndex(int index) {
assert(index >= 0 && index < 2);
if (index == 0) {
return I18n::Message::RepetitionNumber;
} else {
return I18n::Message::SuccessProbability;
}
}
float BinomialLaw::xMin() {
float min = 0.0f;
float max = m_parameter1;
return min - k_displayLeftMarginRatio * (max - min);
}
float BinomialLaw::xMax() {
float min = 0.0f;
float max = m_parameter1;
if (max <= min) {
max = min + 1.0f;
}
return max + k_displayRightMarginRatio*(max - min);
}
float BinomialLaw::yMin() {
return -k_displayBottomMarginRatio*yMax();
}
float BinomialLaw::yMax() {
int maxAbscissa = m_parameter2 < 1.0f ? (m_parameter1+1)*m_parameter2 : m_parameter1;
float result = evaluateAtAbscissa(maxAbscissa);
if (result <= 0.0f || isnan(result)) {
result = 1.0f;
}
return result*(1.0f+ k_displayTopMarginRatio);
}
float BinomialLaw::evaluateAtAbscissa(float x) const {
if (m_parameter1 == 0.0f) {
if (m_parameter2 == 0.0f || m_parameter2 == 1.0f) {
return NAN;
}
if ((int)x == 0) {
return 1.0f;
}
return 0.0f;
}
if (m_parameter2 == 1.0f) {
if ((int)x == m_parameter1) {
return 1.0f;
}
return 0.0f;
}
if (m_parameter2 == 0.0f) {
if ((int)x == 0) {
return 1.0f;
}
return 0.0f;
}
if (x > m_parameter1) {
return 0.0f;
}
float lResult = lgammaf(m_parameter1+1) - lgammaf((int)x+1) - lgammaf(m_parameter1 - (int)x+1)+
(int)x*logf(m_parameter2) + (m_parameter1-(int)x)*logf(1-m_parameter2);
return expf(lResult);
}
bool BinomialLaw::authorizedValueAtIndex(float x, int index) const {
if (index == 0) {
if (x != (int)x || x < 0) {
return false;
}
return true;
}
if (x < 0.0f || x > 1.0f) {
return false;
}
return true;
}
float BinomialLaw::cumulativeDistributiveInverseForProbability(float * probability) {
if (m_parameter1 == 0.0f && (m_parameter2 == 0.0f || m_parameter2 == 1.0f)) {
return NAN;
}
if (*probability >= 1.0f) {
return m_parameter1;
}
return Law::cumulativeDistributiveInverseForProbability(probability);
}
float BinomialLaw::rightIntegralInverseForProbability(float * probability) {
if (m_parameter1 == 0.0f && (m_parameter2 == 0.0f || m_parameter2 == 1.0f)) {
return NAN;
}
if (*probability <= 0.0f) {
return m_parameter1;
}
return Law::rightIntegralInverseForProbability(probability);
}
}