Files
Upsilon/apps/probability/law/normal_law.cpp
Émilie Feral adc80cd71b [apps][escher] I18n
Change-Id: I4d6f40155a8a182184af9ef2a583d0469196ffd5
2017-03-16 15:12:12 +01:00

126 lines
3.1 KiB
C++

#include "normal_law.h"
#include <assert.h>
#include <math.h>
#include <float.h>
#include <ion.h>
namespace Probability {
NormalLaw::NormalLaw() :
TwoParameterLaw(0.0f, 1.0f)
{
}
I18n::Message NormalLaw::title() {
return I18n::Message::NormalLaw;
}
Law::Type NormalLaw::type() const {
return Type::Normal;
}
bool NormalLaw::isContinuous() const {
return true;
}
I18n::Message NormalLaw::parameterNameAtIndex(int index) {
assert(index >= 0 && index < 2);
if (index == 0) {
return I18n::Message::Mu;
} else {
return I18n::Message::Sigma;
}
}
I18n::Message NormalLaw::parameterDefinitionAtIndex(int index) {
assert(index >= 0 && index < 2);
if (index == 0) {
return I18n::Message::MeanDefinition;
} else {
return I18n::Message::DeviationDefinition;
}
}
float NormalLaw::xMin() {
if (m_parameter2 == 0.0f) {
return m_parameter1 - 1.0f;
}
return m_parameter1 - 5.0f*fabsf(m_parameter2);
}
float NormalLaw::xMax() {
if (m_parameter2 == 0.0f) {
return m_parameter1 + 1.0f;
}
return m_parameter1 + 5.0f*fabsf(m_parameter2);
}
float NormalLaw::yMin() {
return -k_displayBottomMarginRatio*yMax();
}
float NormalLaw::yMax() {
float maxAbscissa = m_parameter1;
float result = evaluateAtAbscissa(maxAbscissa);
if (isnan(result) || result <= 0.0f) {
result = 1.0f;
}
return result*(1.0f+ k_displayTopMarginRatio);
}
float NormalLaw::evaluateAtAbscissa(float x) const {
if (m_parameter2 == 0.0f) {
return NAN;
}
return (1.0f/(fabsf(m_parameter2)*sqrtf(2.0f*M_PI)))*expf(-0.5f*powf((x-m_parameter1)/m_parameter2,2));
}
bool NormalLaw::authorizedValueAtIndex(float x, int index) const {
return true;
}
float NormalLaw::cumulativeDistributiveFunctionAtAbscissa(float x) const {
if (m_parameter2 == 0.0f) {
return NAN;
}
return standardNormalCumulativeDistributiveFunctionAtAbscissa((x-m_parameter1)/fabsf(m_parameter2));
}
float NormalLaw::cumulativeDistributiveInverseForProbability(float * probability) {
if (m_parameter2 == 0.0f) {
return NAN;
}
return standardNormalCumulativeDistributiveInverseForProbability(*probability)*fabsf(m_parameter2) + m_parameter1;
}
float NormalLaw::standardNormalCumulativeDistributiveFunctionAtAbscissa(float abscissa) const {
if (abscissa == 0.0f) {
return 0.5f;
}
if (abscissa < 0.0f) {
return 1.0f - standardNormalCumulativeDistributiveFunctionAtAbscissa(-abscissa);
}
if (abscissa > k_boundStandardNormalDistribution) {
return 1.0f;
}
/* Waissi & Rossin's formula (error less than 0.0001) */
return 1.0f/(1.0f+expf(-sqrtf(M_PI)*(k_beta1*powf(abscissa,5)+k_beta2*powf(abscissa,3)+k_beta3*abscissa)));
}
float NormalLaw::standardNormalCumulativeDistributiveInverseForProbability(float probability) {
if (probability >= 1.0f) {
return INFINITY;
}
if (probability <= 0.0f) {
return -INFINITY;
}
if (probability < 0.5f) {
return -standardNormalCumulativeDistributiveInverseForProbability(1-probability);
}
/* Soranzo & Epure (error less than 0.001) */
return (k_alpha3/logf(k_alpha2))*logf(1.0f - logf(-logf(probability)/logf(2.0f))/logf(k_alpha1));
}
}