mirror of
https://github.com/UpsilonNumworks/Upsilon.git
synced 2026-01-18 16:27:34 +01:00
126 lines
3.1 KiB
C++
126 lines
3.1 KiB
C++
#include "normal_law.h"
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <float.h>
|
|
#include <ion.h>
|
|
|
|
namespace Probability {
|
|
|
|
NormalLaw::NormalLaw() :
|
|
TwoParameterLaw(0.0f, 1.0f)
|
|
{
|
|
}
|
|
|
|
I18n::Message NormalLaw::title() {
|
|
return I18n::Message::NormalLaw;
|
|
}
|
|
|
|
Law::Type NormalLaw::type() const {
|
|
return Type::Normal;
|
|
}
|
|
|
|
bool NormalLaw::isContinuous() const {
|
|
return true;
|
|
}
|
|
|
|
I18n::Message NormalLaw::parameterNameAtIndex(int index) {
|
|
assert(index >= 0 && index < 2);
|
|
if (index == 0) {
|
|
return I18n::Message::Mu;
|
|
} else {
|
|
return I18n::Message::Sigma;
|
|
}
|
|
}
|
|
|
|
I18n::Message NormalLaw::parameterDefinitionAtIndex(int index) {
|
|
assert(index >= 0 && index < 2);
|
|
if (index == 0) {
|
|
return I18n::Message::MeanDefinition;
|
|
} else {
|
|
return I18n::Message::DeviationDefinition;
|
|
}
|
|
}
|
|
|
|
float NormalLaw::xMin() {
|
|
if (m_parameter2 == 0.0f) {
|
|
return m_parameter1 - 1.0f;
|
|
}
|
|
return m_parameter1 - 5.0f*fabsf(m_parameter2);
|
|
}
|
|
|
|
float NormalLaw::xMax() {
|
|
if (m_parameter2 == 0.0f) {
|
|
return m_parameter1 + 1.0f;
|
|
}
|
|
return m_parameter1 + 5.0f*fabsf(m_parameter2);
|
|
}
|
|
|
|
float NormalLaw::yMin() {
|
|
return -k_displayBottomMarginRatio*yMax();
|
|
}
|
|
|
|
float NormalLaw::yMax() {
|
|
float maxAbscissa = m_parameter1;
|
|
float result = evaluateAtAbscissa(maxAbscissa);
|
|
if (isnan(result) || result <= 0.0f) {
|
|
result = 1.0f;
|
|
}
|
|
return result*(1.0f+ k_displayTopMarginRatio);
|
|
}
|
|
|
|
float NormalLaw::evaluateAtAbscissa(float x) const {
|
|
if (m_parameter2 == 0.0f) {
|
|
return NAN;
|
|
}
|
|
return (1.0f/(fabsf(m_parameter2)*sqrtf(2.0f*M_PI)))*expf(-0.5f*powf((x-m_parameter1)/m_parameter2,2));
|
|
}
|
|
|
|
bool NormalLaw::authorizedValueAtIndex(float x, int index) const {
|
|
return true;
|
|
}
|
|
|
|
float NormalLaw::cumulativeDistributiveFunctionAtAbscissa(float x) const {
|
|
if (m_parameter2 == 0.0f) {
|
|
return NAN;
|
|
}
|
|
return standardNormalCumulativeDistributiveFunctionAtAbscissa((x-m_parameter1)/fabsf(m_parameter2));
|
|
}
|
|
|
|
float NormalLaw::cumulativeDistributiveInverseForProbability(float * probability) {
|
|
if (m_parameter2 == 0.0f) {
|
|
return NAN;
|
|
}
|
|
return standardNormalCumulativeDistributiveInverseForProbability(*probability)*fabsf(m_parameter2) + m_parameter1;
|
|
}
|
|
|
|
float NormalLaw::standardNormalCumulativeDistributiveFunctionAtAbscissa(float abscissa) const {
|
|
if (abscissa == 0.0f) {
|
|
return 0.5f;
|
|
}
|
|
if (abscissa < 0.0f) {
|
|
return 1.0f - standardNormalCumulativeDistributiveFunctionAtAbscissa(-abscissa);
|
|
}
|
|
if (abscissa > k_boundStandardNormalDistribution) {
|
|
return 1.0f;
|
|
}
|
|
/* Waissi & Rossin's formula (error less than 0.0001) */
|
|
return 1.0f/(1.0f+expf(-sqrtf(M_PI)*(k_beta1*powf(abscissa,5)+k_beta2*powf(abscissa,3)+k_beta3*abscissa)));
|
|
}
|
|
|
|
float NormalLaw::standardNormalCumulativeDistributiveInverseForProbability(float probability) {
|
|
if (probability >= 1.0f) {
|
|
return INFINITY;
|
|
}
|
|
if (probability <= 0.0f) {
|
|
return -INFINITY;
|
|
}
|
|
if (probability < 0.5f) {
|
|
return -standardNormalCumulativeDistributiveInverseForProbability(1-probability);
|
|
}
|
|
/* Soranzo & Epure (error less than 0.001) */
|
|
return (k_alpha3/logf(k_alpha2))*logf(1.0f - logf(-logf(probability)/logf(2.0f))/logf(k_alpha1));
|
|
}
|
|
|
|
|
|
}
|