Files
Upsilon/poincare/src/integer.cpp
Romain Goyet 84768472bd Explicit std::min/max template usage
This is unfortunately required in several cases:
 - Sometimes when we use either float and double (this should be changed)
 - Because KDCoordinate is not an int, so any arithmemtic promotes it to
an int
 - Because we mix pointer differences and ints
2020-04-14 09:31:02 -04:00

710 lines
24 KiB
C++

#include <poincare/integer.h>
#include <poincare/code_point_layout.h>
#include <poincare/ieee754.h>
#include <poincare/layout_helper.h>
#include <poincare/serialization_helper.h>
#include <ion/unicode/utf8_decoder.h>
#include <ion/unicode/utf8_helper.h>
#include <poincare/addition.h>
#include <poincare/division.h>
#include <poincare/division_quotient.h>
#include <poincare/division_remainder.h>
#include <poincare/equal.h>
#include <poincare/multiplication.h>
#include <cmath>
#include <utility>
extern "C" {
#include <stdlib.h>
#include <string.h>
#include <assert.h>
}
#if POINCARE_INTEGER_LOG
#include<iostream>
#endif
#include <algorithm>
namespace Poincare {
/* To compute operations between Integers, we need an array where to store the
* result digits. Instead of allocating it on the stack which would eventually
* lead to a stack overflow, we keep a static working buffer. We actually need
* two of them because division involves inner multiplications and additions
* (which would override the division digits if there were using the same
* buffer). */
// TODO: we might want to go back to allocating the native_uint_t arrays on the stack once we increase the stack size from 32k to?
static native_uint_t s_workingBuffer[Integer::k_maxNumberOfDigits + 1];
static native_uint_t s_workingBufferDivision[Integer::k_maxNumberOfDigits + 1];
uint8_t log2(native_uint_t v) {
constexpr int nativeUnsignedIntegerBitCount = 8*sizeof(native_uint_t);
static_assert(nativeUnsignedIntegerBitCount < 256, "uint8_t cannot contain the log2 of a native_uint_t");
for (uint8_t i=0; i<nativeUnsignedIntegerBitCount; i++) {
if (v < ((native_uint_t)1<<i)) {
return i;
}
}
return 32;
}
static inline char char_from_digit(native_uint_t digit) {
return '0'+digit;
}
static inline int8_t sign(bool negative) {
return 1 - 2*(int8_t)negative;
}
IntegerNode::IntegerNode(const native_uint_t * digits, uint8_t numberOfDigits) :
m_numberOfDigits(numberOfDigits)
{
memcpy(m_digits, digits, numberOfDigits*sizeof(native_uint_t));
}
static size_t IntegerSize(uint8_t numberOfDigits) {
return sizeof(IntegerNode) + sizeof(native_uint_t)*(numberOfDigits);
}
size_t IntegerNode::size() const {
return IntegerSize(m_numberOfDigits);
}
#if POINCARE_TREE_LOG
void IntegerNode::logAttributes(std::ostream & stream) const {
stream << " value=\"";
log(stream);
stream << "\"";
}
void IntegerNode::log(std::ostream & stream) const {
if (m_numberOfDigits > Integer::k_maxNumberOfDigits) {
stream << "overflow";
return;
}
double d = 0.0;
double base = 1.0;
for (int i = 0; i < m_numberOfDigits; i++) {
d += m_digits[i]*base;
base *= std::pow(2.0,32.0);
}
stream << d;
}
#endif
// Constructor
Integer Integer::BuildInteger(native_uint_t * digits, uint16_t numberOfDigits, bool negative, bool enableOverflow) {
if ((!digits || !enableOverflow) && numberOfDigits >= k_maxNumberOfDigits+1) {
return Overflow(negative);
}
// 0 can't be negative
negative = numberOfDigits == 0 ? false : negative;
if (numberOfDigits <= 1) {
Integer i(TreeNode::NoNodeIdentifier, negative);
i.m_digit = numberOfDigits == 0 ? 0 : digits[0];
return i;
}
return Integer(digits, numberOfDigits, negative);
}
// Private constructor
Integer::Integer(native_uint_t * digits, uint16_t numberOfDigits, bool negative) {
void * bufferNode = TreePool::sharedPool()->alloc(IntegerSize(numberOfDigits));
IntegerNode * node = new (bufferNode) IntegerNode(digits, numberOfDigits);
TreeHandle h = TreeHandle::BuildWithGhostChildren(node);
/* Integer is a TreeHandle that keeps an extra integer. We cannot just cast
* the TreeHandle in Integer, we have to build a new Integer. To do so, we
* pilfer the TreeHandle identifier. */
new (this) Integer(h.identifier(), negative);
}
Integer::Integer(native_int_t i) : TreeHandle(TreeNode::NoNodeIdentifier) {
m_digit = i > 0 ? i : -i;
m_negative = i < 0;
}
Integer::Integer(double_native_int_t i) {
double_native_uint_t j = i < 0 ? -i : i;
native_uint_t * d = (native_uint_t *)&j;
native_uint_t leastSignificantDigit = *d;
native_uint_t mostSignificantDigit = *(d+1);
uint8_t numberOfDigits = (mostSignificantDigit == 0) ? 1 : 2;
if (numberOfDigits == 1) {
m_identifier = TreeNode::NoNodeIdentifier;
m_negative = i < 0;
m_digit = leastSignificantDigit;
} else {
new (this) Integer(d, 2, i < 0);
}
}
int integerFromCharDigit(char c) {
assert(c >= '0');
if (c <= '9') {
return c - '0';
}
if (c <= 'F') {
assert(c >= 'A');
return c - 'A' + 10;
}
assert(c >= 'a' && c <= 'f');
return c - 'a' + 10;
}
Integer::Integer(const char * digits, size_t length, bool negative, Base b) :
Integer(0)
{
if (digits != nullptr && UTF8Helper::CodePointIs(digits, '-')) {
negative = true;
digits++;
length--;
}
if (digits != nullptr) {
Integer base((int)b);
for (size_t i = 0; i < length; i++) {
*this = Multiplication(*this, base);
*this = Addition(*this, Integer(integerFromCharDigit(*digits)));
digits++;
}
}
setNegative(isZero() ? false : negative);
}
// Serialization
char binaryCharacterForDigit(uint8_t d) {
assert(d == 0 || d == 1);
return d == 0 ? '0' : '1';
}
char hexadecimalCharacterForDigit(uint8_t d) {
if (d >= 10) {
return 'A' + d - 10;
}
return d + '0';
}
int Integer::serialize(char * buffer, int bufferSize, Base base) const {
if (bufferSize == 0) {
return -1;
}
buffer[bufferSize-1] = 0;
if (bufferSize == 1) {
return 0;
}
if (isOverflow()) {
return PrintFloat::ConvertFloatToText<float>(m_negative ? -INFINITY : INFINITY, buffer, bufferSize, PrintFloat::k_maxFloatGlyphLength, PrintFloat::k_numberOfStoredSignificantDigits, Preferences::PrintFloatMode::Decimal).CharLength;
}
switch (base) {
case Base::Binary:
return serializeInBinaryBase(buffer, bufferSize, 1, 'b', binaryCharacterForDigit);
case Base::Decimal:
return serializeInDecimal(buffer, bufferSize);
default:
assert(base == Base::Hexadecimal);
return serializeInBinaryBase(buffer, bufferSize, 4, 'x', hexadecimalCharacterForDigit);
}
}
int Integer::serializeInDecimal(char * buffer, int bufferSize) const {
Integer base(10);
Integer abs = *this;
abs.setNegative(false);
IntegerDivision d = udiv(abs, base);
int length = 0;
if (isZero()) {
length += SerializationHelper::CodePoint(buffer + length, bufferSize - length, '0');
} else if (isNegative()) {
length += SerializationHelper::CodePoint(buffer + length, bufferSize - length, '-');
}
while (!(d.remainder.isZero() &&
d.quotient.isZero())) {
char c = char_from_digit(d.remainder.isZero() ? 0 : d.remainder.digit(0));
if (length >= bufferSize-1) {
return PrintFloat::ConvertFloatToText<float>(NAN, buffer, bufferSize, PrintFloat::k_maxFloatGlyphLength, PrintFloat::k_numberOfStoredSignificantDigits, Preferences::PrintFloatMode::Decimal).CharLength;
}
length += SerializationHelper::CodePoint(buffer + length, bufferSize - length, c);
d = udiv(d.quotient, base);
}
assert(length <= bufferSize - 1);
buffer[length] = 0;
// Flip the string
for (int i = m_negative, j=length-1 ; i < j ; i++, j--) {
char c = buffer[i];
buffer[i] = buffer[j];
buffer[j] = c;
}
return length;
}
int Integer::serializeInBinaryBase(char * buffer, int bufferSize, int bitsPerDigit, char symbol, CharacterForDigit charForDigit) const {
int currentChar = 0;
// Check that we can at least write "0x0"
if (bufferSize <= 4) {
return -1;
}
// Fill buffer with "0x"
buffer[currentChar++] = '0';
buffer[currentChar++] = symbol;
int nbOfDigits = numberOfDigits();
// Special case for 0
if (nbOfDigits == 0) {
buffer[currentChar++] = '0';
buffer[currentChar] = 0;
return currentChar;
}
// Compute the required bufferSize to print the integer
// TODO: share this code with exam mode new version
native_uint_t lastDigit = digit(nbOfDigits-1);
int minShift = 0;
int maxShift = 32;
while (maxShift > minShift+1) {
int shift = (minShift + maxShift)/2;
native_uint_t shifted = lastDigit >> shift;
if (shifted == 0) {
maxShift = shift;
} else {
minShift = shift;
}
}
int requiredBufferSize = ((nbOfDigits-1)*32+(maxShift+bitsPerDigit-1))/bitsPerDigit;
// Don't forget 0x prefix and the null termination
requiredBufferSize += 3;
if (requiredBufferSize > bufferSize) {
return -1;
}
currentChar = requiredBufferSize - 1;
buffer[currentChar--] = 0;
uint8_t first4bits = ((1 << bitsPerDigit) - 1);
for (int i = 0; i < nbOfDigits; i++) {
for (int j = 0; j < 32/bitsPerDigit; j++) {
char d = (digit(i) >> j*bitsPerDigit) & first4bits;
buffer[currentChar--] = charForDigit(d);
if (currentChar == 1) {
return requiredBufferSize-1;
}
}
}
return requiredBufferSize-1;
}
// Layout
Layout Integer::createLayout(Base base) const {
char buffer[k_maxNumberOfDigitsBase10];
int numberOfChars = serialize(buffer, k_maxNumberOfDigitsBase10, base);
assert(numberOfChars >= 1);
if ((int)UTF8Decoder::CharSizeOfCodePoint(buffer[0]) == numberOfChars) {
UTF8Decoder decoder = UTF8Decoder(buffer);
return CodePointLayout::Builder(decoder.nextCodePoint());
}
return LayoutHelper::String(buffer, numberOfChars);
}
// Approximation
template<typename T>
T Integer::approximate() const {
if (numberOfDigits() == 0) {
/* This special case for 0 is needed, because the current algorithm assumes
* that the big integer is non zero, thus puts the exponent to 126 (integer
* area), the issue is that when the mantissa is 0, a "shadow bit" is
* assumed to be there, thus 126 0x000000 is equal to 0.5 and not zero.
*/
return (T)0.0;
}
assert(sizeof(T) == 4 || sizeof(T) == 8);
/* We're generating an IEEE 754 compliant float(double).
* We can tell that:
* - the sign depends on m_negative
* - the exponent is the length of our BigInt, in bits - 1 + 127 (-1+1023);
* - the mantissa is the beginning of our BigInt, discarding the first bit
*/
if (isOverflow()) {
return m_negative ? -INFINITY : INFINITY;
}
assert(numberOfDigits() > 0);
native_uint_t lastDigit = digit(numberOfDigits()-1);
uint8_t numberOfBitsInLastDigit = log2(lastDigit);
bool sign = m_negative;
uint16_t exponent = IEEE754<T>::exponentOffset();
/* Escape case if the exponent is too big to be stored */
assert(numberOfDigits() > 0);
if (((int)numberOfDigits()-1)*32+numberOfBitsInLastDigit-1> IEEE754<T>::maxExponent()-IEEE754<T>::exponentOffset()) {
return m_negative ? -INFINITY : INFINITY;
}
exponent += (numberOfDigits()-1)*32;
exponent += numberOfBitsInLastDigit-1;
uint64_t mantissa = 0;
/* Shift the most significant int to the left of the mantissa. The most
* significant 1 will be ignore at the end when inserting the mantissa in
* the resulting uint64_t (as required by IEEE754). */
assert(IEEE754<T>::size()-numberOfBitsInLastDigit >= 0 && IEEE754<T>::size()-numberOfBitsInLastDigit < 64); // Shift operator behavior is undefined if the right operand is negative, or greater than or equal to the length in bits of the promoted left operand
mantissa |= ((uint64_t)lastDigit << (IEEE754<T>::size()-numberOfBitsInLastDigit));
uint8_t digitIndex = 2;
int numberOfBits = numberOfBitsInLastDigit;
/* Complete the mantissa by inserting, from left to right, every digit of the
* Integer from the most significant one to the last from. We break when
* the mantissa is complete to avoid undefined right shifting (Shift operator
* behavior is undefined if the right operand is negative, or greater than or
* equal to the length in bits of the promoted left operand). */
while (numberOfDigits() >= digitIndex && numberOfBits < IEEE754<T>::size()) {
lastDigit = digit(numberOfDigits()-digitIndex);
numberOfBits += 32;
if (IEEE754<T>::size() > numberOfBits) {
assert(IEEE754<T>::size()-numberOfBits > 0 && IEEE754<T>::size()-numberOfBits < 64);
mantissa |= ((uint64_t)lastDigit << (IEEE754<T>::size()-numberOfBits));
} else {
mantissa |= ((uint64_t)lastDigit >> (numberOfBits-IEEE754<T>::size()));
}
digitIndex++;
}
T result = IEEE754<T>::buildFloat(sign, exponent, mantissa);
/* If exponent is 255 and the float is undefined, we have exceed IEEE 754
* representable float. */
if (exponent == IEEE754<T>::maxExponent() && std::isnan(result)) {
return INFINITY;
}
return result;
}
// Properties
int Integer::NumberOfBase10DigitsWithoutSign(const Integer & i) {
assert(!i.isOverflow());
int numberOfDigits = 1;
Integer base(10);
IntegerDivision d = udiv(i, base);
while (!d.quotient.isZero()) {
d = udiv(d.quotient, base);
numberOfDigits++;
}
return numberOfDigits;
}
// Comparison
int Integer::NaturalOrder(const Integer & i, const Integer & j) {
if (i.isNegative() && !j.isNegative()) {
return -1;
}
if (!i.isNegative() && j.isNegative()) {
return 1;
}
return ::Poincare::sign(i.isNegative())*ucmp(i, j);
}
// Arithmetic
IntegerDivision Integer::Division(const Integer & numerator, const Integer & denominator) {
IntegerDivision ud = udiv(numerator, denominator);
if (!numerator.isNegative() && !denominator.isNegative()) {
return ud;
}
if (!ud.remainder.isZero() && numerator.isNegative()) {
ud.quotient = usum(ud.quotient, Integer(1), false);
ud.remainder = usum(denominator, ud.remainder, true); // |denominator|-remainder
}
ud.quotient.setNegative((numerator.isNegative() && !denominator.isNegative()) || (!numerator.isNegative() && denominator.isNegative()));
return ud;
}
Integer Integer::Power(const Integer & i, const Integer & j) {
// TODO: optimize with dichotomia
assert(!j.isNegative());
if (j.isOverflow()) {
return Overflow(false);
}
Integer index(j);
Integer result(1);
while (!index.isZero()) {
result = Multiplication(result, i);
index = usum(index, Integer(1), true);
}
return result;
}
Integer Integer::Factorial(const Integer & i) {
assert(!i.isNegative());
if (i.isOverflow()) {
return Overflow(false);
}
Integer j(2);
Integer result(1);
while (ucmp(i,j) >= 0) {
result = Multiplication(j, result);
j = usum(j, Integer(1), false);
}
return result;
}
Integer Integer::addition(const Integer & a, const Integer & b, bool inverseBNegative, bool oneDigitOverflow) {
bool bNegative = (inverseBNegative ? !b.m_negative : b.m_negative);
if (a.m_negative == bNegative) {
Integer us = usum(a, b, false, oneDigitOverflow);
us.setNegative(a.m_negative);
return us;
} else {
/* The signs are different, this is in fact a subtraction
* s = a+b = (abs(a)-abs(b) OR abs(b)-abs(a))
* 1/abs(a)>abs(b) : s = sign*udiff(a, b)
* 2/abs(b)>abs(a) : s = sign*udiff(b, a)
* sign? sign of the greater! */
if (ucmp(a, b) >= 0) {
Integer us = usum(a, b, true, oneDigitOverflow);
us.setNegative(a.m_negative);
return us;
} else {
Integer us = usum(b, a, true, oneDigitOverflow);
us.setNegative(bNegative);
return us;
}
}
}
Integer Integer::multiplication(const Integer & a, const Integer & b, bool oneDigitOverflow) {
if (a.isOverflow() || b.isOverflow()) {
return Integer::Overflow(a.m_negative != b.m_negative);
}
uint8_t size = std::min(a.numberOfDigits() + b.numberOfDigits(), k_maxNumberOfDigits + oneDigitOverflow); // Enable overflowing of 1 digit
memset(s_workingBuffer, 0, size*sizeof(native_uint_t));
double_native_uint_t carry = 0;
for (uint8_t i = 0; i < a.numberOfDigits(); i++) {
double_native_uint_t aDigit = a.digit(i);
carry = 0;
for (uint8_t j = 0; j < b.numberOfDigits(); j++) {
double_native_uint_t bDigit = b.digit(j);
/* The fact that aDigit and bDigit are double_native is very important,
* otherwise the product might end up being computed on single_native size
* and then zero-padded. */
double_native_uint_t p = aDigit*bDigit + carry + (double_native_uint_t)(s_workingBuffer[i+j]); // TODO: Prove it cannot overflow double_native type
native_uint_t * l = (native_uint_t *)&p;
if (i+j < (uint8_t) k_maxNumberOfDigits+oneDigitOverflow) {
s_workingBuffer[i+j] = l[0];
} else {
if (l[0] != 0) {
// Overflow the largest Integer
return Integer::Overflow(a.m_negative != b.m_negative);
}
}
carry = l[1];
}
if (i+b.numberOfDigits() < (uint8_t) k_maxNumberOfDigits+oneDigitOverflow) {
s_workingBuffer[i+b.numberOfDigits()] += carry;
} else {
if (carry != 0) {
// Overflow the largest Integer
return Integer::Overflow(a.m_negative != b.m_negative);
}
}
}
while (size>0 && s_workingBuffer[size-1] == 0) {
size--;
}
return BuildInteger(s_workingBuffer, size, a.m_negative != b.m_negative, oneDigitOverflow);
}
int8_t Integer::ucmp(const Integer & a, const Integer & b) {
if (a.numberOfDigits() < b.numberOfDigits()) {
return -1;
} else if (a.numberOfDigits() > b.numberOfDigits()) {
return 1;
}
if (a.isOverflow() && b.isOverflow()) {
return 0;
}
assert(!a.isOverflow());
assert(!b.isOverflow());
for (uint16_t i = 0; i < a.numberOfDigits(); i++) {
// Digits are stored most-significant last
native_uint_t aDigit = a.digit(a.numberOfDigits()-i-1);
native_uint_t bDigit = b.digit(b.numberOfDigits()-i-1);
if (aDigit < bDigit) {
return -1;
} else if (aDigit > bDigit) {
return 1;
}
}
return 0;
}
Integer Integer::usum(const Integer & a, const Integer & b, bool subtract, bool oneDigitOverflow) {
if (a.isOverflow() || b.isOverflow()) {
return Overflow(a.m_negative != b.m_negative);
}
uint8_t size = std::max(a.numberOfDigits(), b.numberOfDigits());
if (!subtract) {
// Addition can overflow
size++;
}
bool carry = false;
for (uint8_t i = 0; i < size; i++) {
native_uint_t aDigit = (i >= a.numberOfDigits() ? 0 : a.digit(i));
native_uint_t bDigit = (i >= b.numberOfDigits() ? 0 : b.digit(i));
native_uint_t result = (subtract ? aDigit - bDigit - carry : aDigit + bDigit + carry);
if (i < (uint8_t) (k_maxNumberOfDigits + oneDigitOverflow)) {
s_workingBuffer[i] = result;
} else {
if (result != 0) {
// Overflow the largest Integer
return Overflow(false);
}
}
if (subtract) {
carry = (aDigit < result) || (carry && aDigit == result); // There's been an underflow
} else {
carry = (aDigit > result) || (bDigit > result); // There's been an overflow
}
}
size = std::min<int>(size, k_maxNumberOfDigits+oneDigitOverflow);
while (size>0 && s_workingBuffer[size-1] == 0) {
size--;
}
return BuildInteger(s_workingBuffer, size, false, oneDigitOverflow);
}
Integer Integer::multiplyByPowerOf2(uint8_t pow) const {
assert(pow < 32);
native_uint_t carry = 0;
for (uint8_t i = 0; i < numberOfDigits(); i++) {
s_workingBuffer[i] = digit(i) << pow | carry;
carry = pow == 0 ? 0 : digit(i) >> (32-pow);
}
s_workingBuffer[numberOfDigits()] = carry;
return BuildInteger(s_workingBuffer, carry ? numberOfDigits() + 1 : numberOfDigits(), false, true);
}
Integer Integer::divideByPowerOf2(uint8_t pow) const {
assert(pow < 32);
native_uint_t carry = 0;
for (int i = numberOfDigits() - 1; i >= 0; i--) {
s_workingBuffer[i] = digit(i) >> pow | carry;
carry = pow == 0 ? 0 : digit(i) << (32-pow);
}
return BuildInteger(s_workingBuffer, s_workingBuffer[numberOfDigits()-1] > 0 ? numberOfDigits() : numberOfDigits()-1, false, true);
}
// return this*(2^16)^pow
Integer Integer::multiplyByPowerOfBase(uint8_t pow) const {
int nbOfHalfDigits = numberOfHalfDigits();
half_native_uint_t * digits = reinterpret_cast<half_native_uint_t *>(s_workingBuffer);
/* The number of half digits of the built integer is nbOfHalfDigits+pow.
* Still, we set an extra half digit to 0 to easily convert half digits to
* digits. */
memset(digits, 0, sizeof(half_native_uint_t)*(nbOfHalfDigits+pow+1));
for (uint8_t i = 0; i < nbOfHalfDigits; i++) {
digits[i+pow] = halfDigit(i);
}
nbOfHalfDigits += pow;
return BuildInteger((native_uint_t *)digits, nbOfHalfDigits%2 == 1 ? nbOfHalfDigits/2+1 : nbOfHalfDigits/2, false, true);
}
IntegerDivision Integer::udiv(const Integer & numerator, const Integer & denominator) {
if (denominator.isOverflow()) {
return {.quotient = Overflow(false), .remainder = Integer::Overflow(false)};
}
if (numerator.isOverflow()) {
return {.quotient = Overflow(false), .remainder = Integer::Overflow(false)};
}
/* Modern Computer Arithmetic, Richard P. Brent and Paul Zimmermann
* (Algorithm 1.6) */
assert(!denominator.isZero());
if (ucmp(numerator,denominator) < 0) {
IntegerDivision div = {.quotient = Integer(0), .remainder = Integer(numerator)};
return div;
}
/* Let's call beta = 1 << 16 */
/* Normalize numerator & denominator:
* Find A = 2^k*numerator & B = 2^k*denominator such as B > beta/2
* if A = B*Q+R (R < B) then numerator = denominator*Q + R/2^k. */
half_native_uint_t b = denominator.halfDigit(denominator.numberOfHalfDigits()-1);
half_native_uint_t halfBase = 1 << (16-1);
int pow = 0;
assert(b != 0);
while (!(b & halfBase)) {
b = b << 1;
pow++;
}
Integer A = numerator.multiplyByPowerOf2(pow);
Integer B = denominator.multiplyByPowerOf2(pow);
/* A = a[0] + a[1]*beta + ... + a[n+m-1]*beta^(n+m-1)
* B = b[0] + b[1]*beta + ... + b[n-1]*beta^(n-1) */
int n = B.numberOfHalfDigits();
int m = A.numberOfHalfDigits()-n;
// qDigits is a half_native_uint_t array and enable one digit overflow
half_native_uint_t * qDigits = reinterpret_cast<half_native_uint_t *>(s_workingBufferDivision);
// The quotient q has at maximum m+1 half digits but we set an extra half digit to 0 to enable to easily convert it from half digits to digits
memset(qDigits, 0, std::max(m+1+1,2*k_maxNumberOfDigits)*sizeof(half_native_uint_t));
// betaMB = B*beta^m
Integer betaMB = B.multiplyByPowerOfBase(m);
if (Integer::NaturalOrder(A,betaMB) >= 0) { // A >= B*beta^m
qDigits[m] = 1; // q[m] = 1
A = usum(A, betaMB, true, true); // A-B*beta^m
}
native_int_t base = 1 << 16;
for (int j = m-1; j >= 0; j--) {
native_uint_t qj2 = ((native_uint_t)A.halfDigit(n+j)*base+(native_uint_t)A.halfDigit(n+j-1))/(native_uint_t)B.halfDigit(n-1); // (a[n+j]*beta+a[n+j-1])/b[n-1]
half_native_uint_t baseMinus1 = (1 << 16) -1; // beta-1
qDigits[j] = qj2 < (native_uint_t)baseMinus1 ? (half_native_uint_t)qj2 : baseMinus1; // std::min(qj2, beta -1)
A = Integer::addition(A, multiplication(qDigits[j], B.multiplyByPowerOfBase(j), true), true, true); // A-q[j]*beta^j*B
if (A.isNegative()) {
Integer betaJM = B.multiplyByPowerOfBase(j); // betaJM = B*beta^j
while (A.isNegative()) {
qDigits[j] = qDigits[j]-1; // q[j] = q[j]-1
A = addition(A, betaJM, false, true); // A = B*beta^j+A
}
}
}
int qNumberOfDigits = m+1;
while (qDigits[qNumberOfDigits-1] == 0 && qNumberOfDigits > 1) {
qNumberOfDigits--;
}
int qNumberOfDigitsInBase32 = qNumberOfDigits%2 == 1 ? qNumberOfDigits/2+1 : qNumberOfDigits/2;
IntegerDivision div = {.quotient = BuildInteger((native_uint_t *)qDigits, qNumberOfDigitsInBase32, false), .remainder = A};
if (pow > 0 && !div.remainder.isZero()) {
div.remainder = div.remainder.divideByPowerOf2(pow);
}
return div;
}
Expression Integer::CreateMixedFraction(const Integer & num, const Integer & denom) {
Expression quo = DivisionQuotient::Reduce(num, denom);
Expression rem = DivisionRemainder::Reduce(num, denom);
return Addition::Builder(quo, Division::Builder(rem, Rational::Builder(denom)));
}
Expression Integer::CreateEuclideanDivision(const Integer & num, const Integer & denom) {
Expression quo = DivisionQuotient::Reduce(num, denom);
Expression rem = DivisionRemainder::Reduce(num, denom);
Expression e = Equal::Builder(Rational::Builder(num), Addition::Builder(Multiplication::Builder(Rational::Builder(denom), quo), rem));
ExpressionNode::ReductionContext defaultReductionContext = ExpressionNode::ReductionContext(nullptr, Preferences::ComplexFormat::Real, Preferences::AngleUnit::Radian, ExpressionNode::ReductionTarget::User, ExpressionNode::SymbolicComputation::ReplaceAllSymbolsWithDefinitionsOrUndefined);
e = e.deepBeautify(defaultReductionContext);
return e;
}
template float Integer::approximate<float>() const;
template double Integer::approximate<double>() const;
}